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A new modeling code, ZFSFIT (standing for Zero Field Split-
ing FITting), written in FORTRAN 77 is proposed. It is designed
or computing and fitting EPR powder spectra described by any
pin Hamiltonian including second- and fourth-order ZFS terms
S < 5

2) and/or a hyperfine term (I < 7
2). Based on numerical

iagonalization of the spin Hamiltonian, this code computes the
owder spectrum, the calculated angular dependencies, and the
nergy levels at any orientation. Least-squares refinement of the
pin Hamiltonian parameters is performed either by adjusting
owder line positions (EPRPLP module) or by directly fitting the
owder spectra (ZFSFIT code). Especially, simultaneous fitting of
PR powder line positions recorded at distinct frequencies im-
roves the accuracy of the refined EPR parameters. Superhyper-
ne effects as well as broadening effects due to site-to-site distri-
ution of g-, A-, and ZFS parameters are treated using first-order
erturbation theory and can also be refined. Parameters for several
istinct centers can be fitted simultaneously, allowing quantifica-
ion of their relative amounts in the sample. After a description of
he algorithm, determination of second- and fourth-order ZFS
arameters of Cr31, Mn21, and Fe31 centers in low-symmetry sites

n minerals are treated, including first evidence of structural Fe31

enters in aAl(OH)3. The code is available without charge to
cademic users from the authors. © 1999 Academic Press

Key Words: EPR; powder; computing; fitting; transition ions.

1. INTRODUCTION

Electron paramagnetic resonance (EPR) spectros
ometimes referred to as electron spin resonance spectro
ESR), is a powerful tool used in several fields of phys
hemistry, and biochemistry (1, 2). Indeed, the low-level de
ection threshold (ppm) and the structural sensitivity of E
llow analysis of the nature and localization of paramagn
oint defects (3) as well as the atomic environment of pa
agnetic ions, mainly first-row transition ions and lanthan

ons, in various solids and liquids (4, 5). For instance, quant
cation of radiation-induced paramagnetic defects by EP
sed for dating and dosimetry (3). EPR is also used to study t

1 To whom correspondence should be addressed. Fax: 33 1 44 27 3
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ite distribution of paramagnetic impurities in solids, as we
he relaxation processes related to their structural accomm
ion by the host matrix (6–8).

Single-crystal EPR analysis yields both the whole set of
amiltonian parameters and the orientation of the princ
xes of the local ligand field with respect to crystallograp
xes. In polycrystalline solids, this relative orientation can
e determined because an EPR powder spectrum is a su

ion over all orientations of the local ligand field with resp
o the static applied field direction (9). The interpretation o
he EPR powder spectra is then only based on the deter
ion of the spin Hamiltonian parameters, whose values re
he local symmetry of the paramagnetic center. Nume
ntegration of the EPR absorbance on the whole orient
phere being time-consuming, interpretation and modelin
owder EPR spectra have been often treated using pertur

heory. Examples of automated fitting of EPR powder spe
or S 5 1

2 species, based on high order perturbation calc
ions, were given in a recent paper (10). In case of higher spi
alues (S. 1

2), perturbation calculations are based on
elative importance of the zero field splitting (ZFS) and of
eeman splitting. Either strong magnetic field approxima
ZFS ! hn) (4, 11, 12) or strong ligand-field approximatio
ZFS @ hn) (13–15) have been used for analyzing fine str
ure spectra of transition elements.

These approximations are, however, clearly inapplicab
he case of an intermediate ligand field (ZFS[ hn), as, for
nstance, for Fe31 and Cr31 ions in many oxides and silicat
6). High-order perturbation calculations (16) or straightfor-
ard numerical diagonalization of the spin Hamiltonian (

or instance,17–21) are then required to determine relia
esonance fields values. For S. 3

2, e.g., for S-state ions, th
arge number of allowed transitions occurring between
nside the Kramers’ doublets, makes it difficult to index
PR lines in powder studies (22, 23), and even in single-cryst
tudies (24). Furthermore, complex angular dependencies
erved for low site symmetry, can only be interpreted
ncluding fourth-order ZFS terms (see, for instance,24–27),5.
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177MODELING EPR POWDER SPECTRA
lthough these terms are still generally omitted in powder
tudies (19–23). Fourth-order ZFS terms must, however,
aken into account to unambiguously distinguish between
plitting due to complex angular dependencies and that re
o the presence of distinct paramagnetic centers (see Sect
or triclinic site symmetry, single-crystal EPR analysis of
elative orientations of the pseudo-symmetry axes of
ourth-order ZFS tensor with respect to those of the cryst
raphic coordination polyhedra is a powerful method for
alizing paramagnetic impurities and for assessing local r
tion of the host structure (8, 28–30). Unfortunately, sinc
rientation of the fourth-order ZFS axes cannot be determ

rom the EPR study of polycrystalline samples, physical in
retation of fourth-order terms derived from powder dat

hen restricted to the qualitative description of the site sym
ry. The use of fourth-order terms, however, significantly
roves the accuracy of second-order terms and is necessa
orrectly modeling powder spectra, a striking point for qu
ifying relative amounts of distinct paramagnetic centers.

Successful attempts at computing EPR powder spect
. 3

2 centers using numerical diagonalization of the s
amiltonian are reported in the literature (17–21). However
mong these works, none deals with complex (S5 5

2) centers in
riclinic symmetry where all fourth-order ZFS terms are
uired. Moreover, no procedure have been proposed for fi
PR powder data in such cases, although this facility offer
bility to fully determine the Hamiltonian parameters of
nown centers, as will be shown in Section 4.
The present computation code, based on numerical d

alization of the full spin Hamiltonian, is designed for co
uting and fitting EPR powder spectra described by any
amiltonian including fourth-order ZFS terms (S# 5

2) and/or
yperfine structure (I# 7

2). It constitutes a significant improv
ent for understanding the complex EPR powder spectr

ountered when ZFS[ hn. After a definition of the spi
amiltonian used (Section 2), the computation algorithm

ime-reducing optimizations and the modeling of EPR pow
ineshapes will be detailed (Section 3). Fluctuations of the
arameter from site to site, which are very common featur
atural and synthetic minerals, are taken into account and
s indicators of structural disorder. Then, it is shown,
nalyzing EPR powder spectra of Fe31 in some polycrystallin
olids (Section 4), that the present code is a powerful too
eriving accurate second- and fourth-order fine structure
ameters from EPR powder data, as well as for asse
elative site occupancies of impurities in minerals.

2. DEFINITION OF THE SPIN HAMILTONIAN
USED IN THE CODE

An EPR spectrum is due to electronic transitions betw
lectronic-spin levels which are hard to calculate from the
amiltonian of an atom surrounded by atom neighbors, e
ially in low site symmetry. A solution of the problem lies
he use of a phenomenological Hamiltonian called the
R
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amiltonian. It is related to an effective spin S for the gro
tate such that the number of levels is 2S1 1 (4).
We used the following spin Hamiltonian to describe

PR spectra of (S# 5
2; I # 7

2) centers:

H 5 bH ? g ? S 1 O
k52,4

O
q52k

k

Bk
qO k

q 1 S ? A ? I , [1]

here the three right-hand terms correspond to the Ze
nteraction, the quadrupole fine structure interaction and
yperfine interaction.
In the Zeeman term,g, b, H, andS are the gyromagnet

ensor, the electronic Bohr magneton, the applied mag
eld vector, and the spin operator in the 2S1 1 dimension
pace, respectively. Theg-tensor is generally anisotropic b
ause of spin–orbit coupling.
The quadrupole fine structure term, which yields a pa

emoval of the primary 2S1 1 degeneracy, i.e., the so-cal
ero-field splitting (ZFS), is related to indirect effects of liga
eld and covalency on the spin states only if S$ 1, and then
eflects the local symmetry of the ligand field. The ZFS t
an be expressed by a linear combination of polynomial o
tors of orderk (with k even andk # 2S 1 1) in Sx, Sy, Sz,
aving the same transformation properties as spherica
onics. Operators with oddk values are not considered b

ause they are not invariant with time reversal (4). Severa
efinitions of these operators as well as various notations
sed in the EPR literature, as extensively reviewed in (31). In

he code proposed here, the Stevens operators (32), Ok
6q, and

he associated real Stevens constant,Bk
6q, were chosen becau

hey are the most often used in the EPR literature (4–7, 31–33).
lgebraic expressions of these operators fork 5 2 and 4 and
atrix elements of the ZFS term in the S5 5

2 case are given i
he Appendix.

When analyzing powder EPR spectra, by contrast with
le-crystal EPR analysis, the relative orientation between

allographic and ZFS principal coordinate frames canno
ssessed. In order to reduce the number of free paramete
oordinate frame will be chosen such that the expression o
FS tensor is as simple as possible. The choice of the refe
oordinate frame as a function of site symmetry, in the pow
ase, is discussed with the help of examples in Section 4
eneral rule is that the principal axis frame of the second-o
FS tensor is taken as the reference coordinate frame.

he site symmetry of the paramagnetic center is higher
onoclinic, second- and fourth-order principal coordin

rames coincide or are mutually related by axis permutat
n contrast, for monoclinic and triclinic site symmetries, p
ipal axes of the second-order and fourth-order ZFS tenso
ot coincide and angular dependencies may become com
owever, when the angle between the principalZ axes of the
econd- and fourth-order ZFS tensors, respectively, rem
mall, this rotation can be neglected. In such cases, the
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179MODELING EPR POWDER SPECTRA
ions of the fourth-order principal axes in theXOY plane are
asily accounted for by the introduction ofB4

2q terms.
In the hyperfine term,A, S, and I are the hyperfine tenso

he electronic-spin operator in the 2S1 1 dimension space, an
he nuclear-spin operator in the (2I1 1)-dimension spac
espectively. The nuclear quadruple interactionI z P z I and the
uclear Zeeman interactionbNH z gN z I may be nonnegligibl

n some cases, and principal axes of theg-, A-, and ZFS tensor
ay significantly differ (34–36). However, implementingI z
z I andbNH z gN z I terms and all possible noncoinciden

etween principal axes ofg, second-order ZFS, fourth-ord
FS,A, gN, andP tensors would yield a large number of fr
arameters, 31 5 1 9 1 6 1 6 1 5 5 34, per center i

riclinic symmetry. Since present applications of our c
ocus on ZFS terms in low-symmetry cases, we reduced
aximum number of parameters to 31 2 1 9 1 3 5 17 per

enter in a triclinic crystal field by neglectinggN andP terms
nd restrictingA andg to be diagonal in the second-order Z
rincipal axes. Under these assumptions, the Zeeman
ecomebH z g z S 5 bH( gxnxSx 1 gynySy 1 gznzSz), where
is the magnetic field module,nx 5 sin u cosf, ny 5 sin u

in f, andnz 5 cosu are the direction cosines of the magn
eld vector in second-order ZFS principal axes, and the
erfine term is reduced toS z A z I 5 Sx AxxI x 1 Sy AyyI y 1

z AzzI z. Nuclear quadruple interactionI z P z I and nuclea
eeman interactionbNH z gN z I as well as off-diagonal term
f g- andA-tensors could be included in future versions of
ode, taking advantage of the full diagonalization proced

3. COMPUTATION OF EPR POWDER SPECTRA

Reliable interpretation and least-squares fitting of EPR p
er spectra require an accurate modeling of EPR powder
hapes. Complex shapes may result both from the intr
PR lineshapes of the individual transitions and from t
ngular dependencies.

.1. Integration Scheme

An EPR powder spectrum can be considered as the su
ion of the spectra corresponding to every orientation {u, f} of
he applied magnetic field direction with respect to the pri
al coordinate system of the EPR center, whoseZ axis is then

aken as quantification axis. Each {u, f} direction defines a
istinct diagram of energy levelsEm(H, u, f) and a distinct se
f transitions (Fig. 1a, 1b). The functionHnm(u, f), which
escribes the variations of the resonance field of a givennm

ransition as a function of the {u, f}, direction is the so-calle
ngular dependency of this transition (Fig. 1c). ForDms 5 61

ransitions, angular dependencies of transition probabil

FIG. 1. Direct least-squares fitting of theQ-band spectrum (n 5 34.004 G
a) Spin levels alongX or Y; (b) spin levels alongZ; observed transitions
ransitions are labelednmp; (d) computed absorbance function; (e) EPR po

xy 5 1.9778;gz 5 1.9807;B2
0 5 20.0623 cm21; sB 0 5 0.002 cm21; an
2

e
he

ms

y-

.

-
e-
ic
ir

a-

i-

s,

nm(u, f), are much weaker than the angular dependenci
esonance field positions and have sometimes been neg
15). However, transition probabilities are functions of {u, f}
nd have to be computed to yield the right intensities, e
ially for weakly allowed transitions. For each transition,
ummation on the orientation sphere yields steps or pea
he absorbance function (Fig. 1d) when the first derivativ
he angular dependency with respect tou or f vanishes. In a
PR powder spectrum, observed lines only correspond to
articular {u, f} directions, often called “turning points” (18)
ince the spectrum is experimentally recorded as the deriv
f the absorbance function with respect to magnetic
trength (Fig. 1e). Therefore, the smoothness of a comp
PR powder spectrum crucially depends on the size an
umber of the elementary solid angles, taken into accou

he summation. As a consequence, optimization of the s
artition is critical for reducing computation time.
Various partitioning schemes, performing the integra

ver a set of approximately equal solid angles, have
roposed in the literature for modeling magnetic reson
owder spectra. Those include the “igloo” method (17) used in

he QPOW code, a spiral integration method (37), an equilat
ral triangular partition (38) and, more recently, the SOPH
ethod based on a triangular partition with elementary t
ular sections having exactly the same solid angle (19).
It is now well accepted these methods have at least two

dvantages with respect to a classical partition using a {u, f}
quare network with constantu andf steps:

(i) The number of computed orientations is severely
uced since each solid angle has approximately or ex
imilar sections. This avoids the excessive computations
ng from classical square grid partitions, when varyingf for
mall values ofu (38).
(ii) They do not introduce any divergence in the absorba

ntensity whenu approaches zero. This is not the case in
quare grid partition, where the contribution of each solid a
as to be weighted by sinu (38).

In addition, triangular partitions are more suitable for
nterpolation algorithms, i.e., two-dimensional linear inter
ation in (38) and one-dimensional spline interpolations in
OPHE method (19), than the “igloo” method (17), which

equires nonlinear two-dimensional interpolations. Finally,
ngular partitions where the integration grid is comple
efined (19, 38) are preferable to the spiral method (37) where
odes are determined at each angular step using a minim
outine, as discussed in (19).

It is also important to remark that since energy levels
enerally sorted and indexed as increasing energy value17–

at 300 K of the Cr31 center in synthetic polycrystalline ruby (0.03 wt% Cr2O3).
indicated by vertical lines; (c) angular dependencies in the ZOX plane

er spectra: dotted line: experimental spectrum; plain line: computed spec

0 5 0.0035 T.
Hz)
are
wd
d G
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180 MORIN AND BONNIN
1, 37, 38), it is necessary to ensure that transitions do
nvolve any crossing levels when using interpolations for e
ating angular dependencies (17–19, 37, 38), unless the inter
olated resonance field values may not be actually relati

he “same” transition along the interpolation range, as m
ioned by some authors (18, 37, 38). This problem become
rucial when using nonlinear interpolation methods, e.g.,
whole “uf” curve in the SOPHE method (19), especially fo

omputing weakly allowed transitions occurring whenhn [
FS, as pointed out by Van Veen (18). On the contrary, eve

f the linear interpolation scheme of Aldermanet al. (38)
ppears to be less advanced that other methods bas
onlinear interpolations, it offers the ability to generate
bsorbance function relative to each elementary triangle
endently from the data computed for other directions. Th

ore, the crossing of two levels within an elementary triang
olid angle does not affect the absorbance functions com
ithin other elementary solid angles. In addition, approp
omputation of line broadening, by taking into account
lope of the energy levels as a function ofH, allows loca
rrors on transition indices to be compensated in some c
hese aspects are detailed in Section 3.5.
As a consequence, in the present code, the number of

uted orientations is minimized by using the partitioning
nterpolating scheme developed by Aldermanet al.(38). It was
riginally devoted to compute NMR powder spectra and
ot yet been used for modeling EPR powder spectra. In
odel, the summation is performed over the faces of a re
ctahedron placed so that its six vertices lie along the co
ate axes, at unit distances from the origin. Each face o
ctahedron is partitioned to form a grid ofN(N 1 1)/ 2 smal
quilateral triangles having the same area, whereN is referred

o as the partition number. Thus, any vertex of any of th
mall triangles, corresponding to a particular {u, f} orienta-
ion, can be easily indexed by two integers,i and j . The
irection cosines describing the magnetic field vector from
rigin to the grid intersection are directly obtained from

ndices i and j , without recourse to time-consuming trigon
etric function evaluation. The solid angle weighting fac

or any small triangle is approximated by 1/R3, whereR is the
istance from the origin to the small triangle. The small e
elative to this approximation becomes negligible when
artition numberN is increased, and it was shown in (38) that

his method yields the exact spectrum shape, generally
# 125, depending on the anisotropy of the angular de

encies.

.2. Computing Resonance Fields and Transition Intensi

The algorithm of Aldermanet al. (38) was written for
odeling NMR powder spectra, where the resonance
uencies and the intensities of the transitions depend
n the orientation of the magnetic field, since its streng
onstant. Finding the NMR frequencies, for a given or
ation, then only requires solving one eigenproblem of
t
l-

to
n-

er

on
e
e-
e-
r
ed
e
e

es.

m-
d

s
is
lar
i-
e

e

e

r

r
e

ith
-

s

e-
ly

is
-
i-

ensionn, where n is the dimension of the nuclear sp
amiltonian. In contrast, EPR experiments are perfor
y sweeping magnetic field at constant frequency. A
onsequence, for each {u, f} orientation, the eigenproble
as to be solved as a function of the magnetic field stren
his complex issue can be expressed as a super-op
roblem where resonance fields are solution of ann2 gen-
ralized eigenproblem, wheren 5 [1, 2, . . . , (2S 1
)(2I 1 1)] is the dimension of the electron spin Hamil
ian (39). We first checked this algebraic method by us

he HGEEV routine (40) to solve the generalized Hermiti
igenproblem of dimensionn2. Despite the fact that th
ethod is efficient whenn is smaller than 8, it becom
ore than four times slower than the method we pre
elow, when then value increases. In addition, the deg
racy of the eigenvalues of the super-operator mak
ifficult to compute transition probabilities. Another way
nd the resonance field would consist in systematic
omputing eigenvaluesEm(H) of the spin Hamiltonian fo
ll H values, and then looking for transitions betw
omputed levels. This procedure is, however, time-cons
ng since the Hamiltonian is mostly diagonalized for n
esonance fields values.

In the present code, we propose an efficient method co
ng of automatically converging on resonance field val
sing a recursive routine based on Newton dichotomy. F
iven {u, f} orientation, this routine, referred to as SEARC
omputes resonance fieldsHnm (Figs. 1a, 1b) and intensitiesI nm

f everynm transition, without making any excess diagon
zation.

The SEARCH routine can be described as follows. M
um and maximum values of the magnetic field (Hmin and
max, respectively) are taken as starting boundary values fo

earch interval [HA, HB]. The ZHEEV routine (40), designed
or diagonalizing Hermitian matrix (double precision co
lex), is called for computing eigenvalues,En(HA), En(HB),
ndEn(HC), whereHC 5 1

2(HA 1 HB) andn 5 [1, 2, . . . ,
2S1 1)(2I 1 1)]. The occurrence of transition(s) in the [HA,

C] and in the [HC, HB] intervals is checked by testing if th
n value lies within the range [DEmn(HA), DEmn(HC)] and
DEmn(HC), DEmn(HB)], respectively, whereDEmn(H) 5
En(H) 2 Em(H)u. This condition is satisfied for [HA, HC] if
he sign of the productPAC 5 [hn 2 DEmn(HA)][ hn 2
Emn(HC)] is negative, and for [HC, HB] if the sign of the
roductPCB 5 [hn 2 DEmn(HC)][ hn 2 DEmn(HB)] is neg-
tive. If this condition is satisfied for one or both [HA, HC] and
HC, HB] intervals, the SEARCH routine calls itself with [HA,

C] and/or [HC, HB] intervals as new [HA9, HB9] search
nterval. This recursive search is performed untilHA and HB

alues both converge on the same resonance field value
EARCH routine returns when theuHB 2 HAu value become

ower than 1/10 of the experimental field step size used
easuring and computing the spectrum. Such accura

esonance-field values is necessary for constraining int
ated resonance-field values.
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In case of crossingn andm levels, the searching meth
utlined above may fail because a transition may occu
ach side of the crossing point (see Section 3.5). He
espite two transitions occurring within the same [H A, H C]
r [H C, H B] interval, the condition on the negative sign

he productsPAC or PCB, respectively, is not satisfied. A
dditional condition has then to be added. The simplest

o circumvent this difficulty is to keep on searching tran
ions until theuH B 2 H Au value becomes lower than a lim
alue H limit , whatever the signs of thePAC and PCB are. In
ractice, this limit value has to be small enough that e

ransition is found, and as large as possible in orde
educe computing time. Actually, the choice of this lim
alue depends on the complexity of the energy level
ram. If the ZFS terms are small with respect to Zee

erms, energy levels do not cross each other and the
alue is taken as infinite. On the other hand, if the ZFS te
re of the same order of magnitude as the Zeeman
nergy levels often cross each other, and the limit value
e as low as 0.05 T atQ-band.
These remarks show that, for a given orientation, a t

ition between givenm andn levels can occur at more th
ne resonance field value in the magnetic field dom

nvestigated, as already mentioned in (18). Resonance field
ave then to be labeled in all cases asH nmp(u, f), wherep

s the rank of the resonance field for thenm transition.
nmp(u, f) functions, i.e., angular dependencies, can
lotted for all occurring transitions (Fig. 1c). This outpu
f prime importance in order to index the experimental E
owder lines.
Once a resonance fieldHnmp value has been determin

or a given {u, f} direction, the ZHEEV subroutine is calle
or computing the eigenvectors of the spin Hamiltonian

nmp, in order to calculate transition intensity.
Transition intensities betweenn and m energy levels ar

omputed according to (41, 18), considering that the micro
ave oscillating magnetic fieldH 1 is perpendicular to th
pplied magnetic fieldH,

I nm 5 ~1 2 sin2u cos2f!S*xn m
Sxn m

2 sin2u sin f cosf@S*xn m
Syn m

1 S*yn m
Sxn m

#

2 cosu sin u cosf@S*xn m
Szn m

1 S*zn m
Sxn m

#

1 ~1 2 sin2u sin2f!S*yn m
Syn m

2 cosu sin u sin f@S*yn m
Szn m

1 S*zn m
Syn m

#

1 sin2u z S*zn m
Szn m

[2]

ith Skmn 5 ^VmuSkuVn&, whereVm andVn are the eigenvecto
orresponding to levelsm andn, respectively, andSk is a spin
perator,Sx, Sy, or Sz.
n
e,

y
-

y
to

-
n
it
s

m,
ay

-

in

e

t

.3. Computing Lineshapes

Once features originating from the powder problem
ccurately modeled, physical origin of the EPR lineshape

o be taken into account. The classical single-orientation
ineshape can be affected by many parameters, includin
erimental ones and intrinsic ones. The intrinsic width
hape of EPR transitions are actually constrained by
ynamic and static causes that lead to homogeneous and
omogeneous broadening, respectively. Dynamic proc
ccurring in the EPR experiment can be approached b
loch model (1). In this model, the line profile is the classi
rst derivative normalized Lorentzian curve, whose linew
epends on both the spin–lattice and spin–spin relax

imes,t1 andt2, respectively.
On the other side, unresolved superposition of spectral

onents can yield nonhomogeneous broadening:

(i) Unresolved superhyperfine coupling with neighbor
dd nuclear spins (e.g.,1H, 27Al, 31P, 29Si . . . ), which can be
pproximated by a Gaussian broadening of the lineshape1).
(ii) Long-range spin–spin interaction, equivalent to a m

etic field heterogeneity which may generate significant
roadening (4, 42).
(iii) Short-range (super-) exchange interaction (via the

ands), between electronic spin of nearest neighbors
lusters), generally modeled by an exchange Hamiltonia
ociated with two Zeeman terms. For instance, it is writte
ollows for two interacting spins:

bH z g z S1 1 bH z g z S2 1 S1 z J z S2, [3]

hereJ is the exchange tensor. This interaction, not introdu
n the present version of our code, yields specific reson
ines, especially observed for ion pairs in minerals (43, 44).

(iv) Slight variations of the electronic environment from s
o site, at equivalent crystallographic position. Those ma
odeled by local deviations of the spin Hamiltonian para

ers and yield complex anisotropic line broadening. W
hese deviations are small, they can be approximated
aussian distribution, the resulting line broadening being c
uted using first-order perturbation theory (45).

Broadening effects due to site-to-site distribution of Ha
onian parameters may yield useful information on long-ra
isorder and structural relaxation phenomena. Therefore,
ode proposed, the opportunity to take into account s
istribution of any parameter of a (S# 5

2, I # 7
2) spin Hamil-

onianH, i.e., gij , Bk
6q andAij parameters, was included. T

istribution of each Hamiltonian parameter (e.g.,B2
0) is char-

cterized by a perturbation quantity (e.g.,sB 2
0). Theses pertu

ation quantities are simultaneously considered as a u
erturbation Hamiltonian referred to asH S. The full Ham-

ltonian is then written as

H 5 H 0 1 HS, [4]
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here H 0 is the unperturbed Hamiltonian. As explained
ection 3.1, the SEARCH routine yield the resonance field

he transition intensity of every transition for a given orien
ion, using full diagonalization of theH 0 Hamiltonian. For a
iven transition, involvingn andm levels, the variationsDEn

nd DEm of energy levels due toHS are computed using th
rst-order perturbation theory, assuming that the perturb
s small (e.g.,sB 2

0 ! B2
0),

DEn 5 ^VnuHSuVn& andDEm 5 ^VmuHSuVm&, [5]

hereVn andVm are the eigenvectors ofH 0 directly obtained
rom the last iteration of the SEARCH routine. The resul
erturbation on the resonance field position of thenmp transi-

ion, referred to asGSnmp,
is then calculated assuming that

nergy levels are locally linear as a function ofH,

GSnmp
~u, f! 5 2 z uDEm 2 DEniEm /H 2 En /Hu 21, @6#

hereEm/H andEn/H are the local slopes of the ener
evels at the resonance fieldHnmp, those being readily obtaine
rom the two last iterations of the SEARCH routine. T

Snmp
(u, f) value obtained from Eq. [6] is readily conside

s the strain contribution to the full-width-at-half-maxim
FWHM), assuming that the broadening effect is symm
al when the Hamiltonian parameters deviate in a positiv
negative sense (e.g.,6 sB 2

0), this assumption being co
istent with Eq. [5] where the perturbation of the ene
evels are calculated at first order.

Other broadening effects, e.g., unresolved superhype
nteractions and magnetic dipolar broadening, are modele

unique constant and nonzero linewidthG0, in the field do-
ain. The total FWHM in the field domain, includingG0 and
S, was assumed to have the form

Gnmp
~u, f! 5 @G 0

2 1 G Snmp

2 ~u, f!# 1/ 2. [7]

his expression, only correct in the pure Gaussian case
ound to give reasonable results in other cases studied.

Actually, Eq. [6] only holds when the energy levels
inear within the linewidth interval in the field domain. It m
ot be true at low field whenhn [ ZFS and/or whenhn [ A.

n these cases, even a symmetric broadening in the e
frequency) domain rigorously generates an asymmetric b
ning in the field domain, as pointed out by Pilbrowet al. (46),
ho give appropriate analytical expressions allowing

ransformation to be computed. However, despite the fac
sing these expressions requires no more computing time

FIG. 2. Direct least-squares fitting of theQ-band spectrum (n 5 34.200
France). Upper part: angular dependencies; plain lines:DM I 5 0 transit
ower part: (a) experimental spectrum; (b) computed spectrum withsB 2

0 5
nd G0 5 0.004 T.
d
-

n

i-
or

y

ne
by

as

rgy
d-

s
at
an

lassical convolution processes for a single EPR line,
ecessity to generate the partial absorbance spectrum o
mp transition at each {u, f} orientation severely increases t
omputing time when dealing with powder spectra. There
n order to save computing time, Eq. [6] was used. It yield
lternative way to transform linewidth quantities from
nergy domain to the field domain when the linewidth is s
nough in the field domain. Moreover, theGSnmp

(u, f) quantity
btained from Eq. [6] reasonably estimates the linewidt

he nmp transition, when the Hamiltonian parameters d
te around their mean values, provided that these devia
re small.
For example, Fig. 2 shows the effect of a small site di

ution on the EPR spectrum of Mn21 ions substituted for Ca21

ons at the Ca(1) site within the apatite structure (47–49).
omparison between the experimental spectrum (Fig. 2a

he spectrum computed with a constant linewidth (Fig.
ndicates that resonance lines corresponding to transition
ween ^mS 5 65

2, mIu and umS 5 63
2, mI& levels, as well a

etween ^mS 5 63
2, mIu and umS 5 61

2, mI& levels, are
roadened. In contrast, the transition between^mS 5 21

2, mIu
nd umS 5 11

2, mI& levels is not broadened. In first-ord
erturbation approximation, it is expected that small variat

n the B2
0 value do not affect transitions occurring betw

nergy levels with equalmS absolute value (45). The existenc
f such small fluctuations of the local environment of M21

ons in the apatite structure is strongly supported by the a
ent between the experimental spectrum and that comput

ncluding a Gaussian distribution of theB2
0 value withsB 2

0 5
.0015 cm21 (Fig. 2b). These site-to-site modifications m
e interpreted as a signature of the structural accomm

ion of the size mismatch between Mn21 and Ca21 ions (47).
n the same way, a recent application of our code sho
hat it is very suitable for modeling strain effects on thg
actors of radiation-induced defect centers in glasses (50).

.4. Building the Powder Spectrum

Once resonance fields, transition intensities, and linew
re computed and stored separately for eachnmp transition and

or every vertex of the triangular grid, i.e., for every orienta
f H with respect to the ZFS axis frame, powder absorb

unctions relative to eachnmp transition are computed acco
ng to the linear interpolation scheme of Aldermanet al. (38)
Fig. 1c).

It is important to note that the term “interpolation” is ac
lly not fully suitable for characterizing the algorithm of th
uthors. This method drastically differs from a simple lin

nterpolation procedure consisting of generating a large n

z) at 300 K of Mn21 ions at the Ca(1) site in natural apatite from Tregue
; dotted lines:DM I 5 61 transitions, forbidden along the principal ax
0015 cm21 andG0 5 0.004 T; (c) computed spectrum withsB 2

0 5 0 cm21
GH
ions

0.
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er of Dirac delta functions from the three sets of reson
elds and transition intensities exactly computed at the t
ertices of the elementary triangle, as proposed, for insta
or the local linear interpolation procedure within the sub
ition of the SOPHE method (19). In contrast, for each trans
ion, the algorithm developed by Aldermanet al.(38) generate
he absorbance function by “distributing” the average inten
ithin the elementary triangle as a “tent” shape lying in

Hmin, Hmax] interval, whereHmin andHmax are the minimum an
aximum values of the angular dependency of the reson

eld within the elementary triangle, respectively. For a gi
np transition and a given triangleq, the area of this triangula

tent” is taken proportional to the arithmetic averageI nmp(q) of
he transition intensity at the three vertices of the triangle, s
ngular dependence of the transition intensity is gene
mall within the triangle. This method significantly smoot
he absorbance function and gives the exact spectrum
38) with much smaller partition number values than o
ethods based on the summation of Dirac delta function
The partial absorbance functions, relative to eachnmp tran-

ition, are separately stored in order to be separately co
uted, because, as shown in Section 3.3, the linewidth may
rom one transition to another and as a function of thH
irection.
Because of theGS component, the total linewidth depen

oth on then andm spin states involved in thenmp transition,
nd on the {u, f} direction. However, local convolution of th
bsorbance function relative to each transition, for each d

ion or for each elementary triangle using the average o
inewidth over the three vertices (19), is extremely time-con
uming. In the present code, for eachnmp transition, the
verageG nmp(q) of the linewidth over the three vertices of ea

riangleq is computed in a first step. However, in order to s
omputing time, the anisotropic broadening effect over
hole orientation sphere is then approximated by a linew
uantityG# nmp(H), being only a function of the magnetic fie
trength, for a given transition. The main issue for determi

#
nmp(H) arises from the nonbijective character of some ang
ependencies. For instance, for a givennmp transition, when
onsidering two distinct triangles referred to as 1 and
he interval of interpolated resonance field values [H min,

max] (1) and [Hmin, Hmax] (2), corresponding to the two triangle
espectively, often overlap, althoughG nmp(1) Þ G nmp(2) and
nmp(1) Þ I nmp(2). This difficulty was circumvente
y computing, for eachnmp transition and for each interp

atedH value, an average linewidth valueG# nmp(H), weighted
y transition intensities:

1

G# nmp
~H!

O
q51

qmax

I nmp
~q!U

H

5 O
q51

qmax I nmp
~q!

Gnmp
~q!U

H

, [8]

here qmax is the number of triangles which give the sa
nterpolated resonance fieldH for the samenmp transition.
e
e
e,
-

y

ce
n

e
ly
s
pe

r

o-
ry

c-
e

e
e
h

g
r

,

herefore, onceG# nmp(H) is only a function ofH for eachnmp

ransition, the absorbance function of eachnmp transition can
e separately convoluted at the end of the calculation

ull-width G# nmp(H) of the profile shape function varying as
unction of H. A linear combination of normalized Gauss
nd Lorentzian functions (pseudo-Voigt function) was cho
s the line-profile function, since the lineshape resulting f

he various broadening effects outlined above is gene
either pure Lorentzian nor Gaussian. In practice, the
erivative of absorbance for eachnmp transition is readily
btained by convoluting the corresponding absorbance

ions, with a normalized first-derivative pseudo-Voigt funct
pV(H) with FWHM G 5 G# nmp(H) and having the form

dpV~H! 5 ~1 2 a!~216Hp 21G 23!@1 1 4H 2G 22# 22

1 a~216@ln~2!# 3/ 2Hp 1/ 2G 23!

3 exp~24 ln~2! H 2G 22!, [9]

herea is an adjustable parameter in the [0, 1] interval.
onvenience, the full-widthG# nmp(H) have been taken as simi
or the Lorentzian and Gaussian components. Finally, the
ical EPR spectrum is obtained by summing the first-deriv
pectra of allnmp transitions.

.5. Remarks on Crossing Levels

It is important to remember that interpolation methods im
he need to “keep track of the transitions so that the pr
alues are used to interpolate each transition calculated
ointed out by Mombourquette and Weil (37). Van Veen (18)
sed a sorting procedure based on the continuity of the d
tives of the angular dependency, but he remarked tha
xact calculation of the resonance field and of the trans

ntensity had to be substituted to the interpolated values fo
ngular intervals where the correspondence between the
itions cannot be established reliably.” More generally, it
e inferred from the work of Kato (51) that there is no suitab
ethod for sorting wavefunctions, such as the angular de
ency H(u, f) of every transition can be described a
ifferentiable function. Therefore, the simple ascending o
orting is generally preferred, although it fails in some spe
ases which can be classified as two types:

(i) “Looping” transitions (18, 46): There may exist {u, f}
irections where two levelsn andn9 behave in such a way th
, uEn 2 En9u , hn in a particularH interval anduEn 2 En9u

hn outside of this interval. In that case, one transi
ppears at each extremity of the interval, and these two
itions are indexed asnn9p andnn9p11 in our algorithm. How
ver, this situation does not correspond to a true crossing

he conditionuEn 2 En9u . 0 is verified. Moreover, sinceuEn

En9u vary as a function of {u, f}, angular dependencies
n9p andnn9p11 transitions can coalesce at a particular {u, f}
rientation, i.e., coalescence point, such as 0, uEn 2 En9u 5
n. Finally, thenn9 transition may disappear whenuEn 2 En9u
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hn. Such annn9 transition is called a “looping” transitio
ecause its angular dependency forms a loop. Looping tr

ions occur whenhn [ ZFS (see, for instance, 24122, 34223,
nd 45122 transitions in theX-band spectrum ofaAl 2O3:Fe31,
ig. 3), rather than whenhn @ ZFS (Q-band spectrum o
Al 2O3:Fe31, Fig. 4). In our algorithm, sincenn9p and nn9p11

ransitions are indexed separately, they are not interpolate
ith each other at the coalescence point and two undes
teps appear in the absorbance functions of both transi
owever, when computing broadening effects as strain eff
sing Eq. [6] or more appropriate expressions from (46), the
eld domain linewidths ofnn9p andnn9p11 transitions becom
ery large when their angular dependencies coalesce, be
he slopes of then andn9 energy levels vanish at this point,
as experimentally observed (52). Therefore, the compute
PR spectrum is smooth, even if the two branches of the
ave not been interpolated through the coalescence poin

or instance, transitions 24122, 34223, and 45122 in Fig. 3 and
ransitions 23122, 34223, and 45122 in Fig. 5).

(ii) “True crossing”: There may exist particular (u, f) di-
ections where a resonance fieldHnm involves two degenera
evels n and n9 such asuEn 2 En9u 5 0. In such points
eferred to as “true crossing” points, the angular dependen
ll transitions involving then or n9 level cannot be simulta
eously differentiable, whatever procedure has been chos
orting eigenvalues. Indeed, for a given {u, f} orientation and
sing an appropriate sorting order for the energy levels,
nvalues of the Hamiltonian can be described by analy

unctions of H because the spin Hamiltonian is linear inH
51). However, the appropriate sorting order may differ fo
djacent {u, f} orientation if at least two levels cross ea
ther. Consequently, using such sorting procedures yield
ontinuities in the angular dependencies at “true cross
oints. Besides, when energy levels are sorted in asce
rder, a “true crossing” generates an undesirable “repul

eature on the angular dependencies of transitions involvin
rossing levels, as observed for transitions 242 and 232 in Fig.

TAB
Nonzero ZFS Parameters and Integration Domain

of S 5 2 and S 5 5
2 Centers, a

Symmetry Nonzero ZFS parameter

ubic a/120 5 B4
0 1 5B4

4 b

a/120 5 B4
0 1 20=2 B4

3 c

exagonal B2
0, B4

0

uadratic B2
0, B4

0, B4
4

rigonal B2
0, B4

0, B4
3

rthorhombic B2
0, B2

2, B4
0, B4

2, B4
4

onoclinic B2
0, B2

2, B4
0, B4

2, B4
22, B4

4, B4
24

riclinic B2
0, B2

2, B4
0, B4

1, B4
21, B4

2, B4
22, B4

3, B4
2

a X, Y andZ refer to the principal axes of the second-order ZFS tenso
o be diagonal in this coordinate frame.

b Z along a fourfold axis.
c Z along a threefold axis.
si-

ne
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of
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, when levels 3 and 4 cross each other on the axis. How
t can be inferred from the work of Von Neumann and Wig
53) that such true crossing can only occur at isolated poin
he (u, f) space, generally corresponding to high symm
irections. Consequently, when using the interpolation a
ithm of Aldermanet al., the contribution of a discrete “tru
rossing” point to the powder spectrum is small because it
ffects a single elementary triangle among theN(N 1 1)/ 2

riangles, where typically 15# N # 125.

4. REFINEMENT OF EPR PARAMETERS

.1. General Method

The spin Hamiltonian parameters (gij , Bk
q, Aij ) define the

esonance fields and intensities of each transition for everu,
} direction of the magnetic fieldH. Since powder spect
verage all possible orientations of the applied magnetic
irection, relative to the ZFS axis frame, powder lines o
ccur when one of the first derivatives of the angular de
ence function, as a function ofu or f respectively, vanishe

or a given transition. Each line of a powder spectrum is
elated to a particular {u, f} direction of the magnetic fiel
ector H where a nmp transition has a stationary angu
ependency (“turning point”) (Figs. 1, 2, and 3). As a con
uence, any line of a powder spectrum, at anHnmp field
osition, is indexed bynmp and a {u, f} direction. S and
alues and site symmetry of the paramagnetic center con
he number of Hamiltonian parameters required for descr
he EPR spectrum, as well as the domain of integration
uired for computing the EPR powder spectrum (Table 1)
verview of the definition and use of the spin Hamiltonian

ow symmetry systems is given in (54). In cases whereg and
tensors are not diagonal in the same coordinate fr

omplex situations may occur (see, e.g.,34), but these will no
e discussed here.
Determination of the Hamiltonian parameters from the

1
quired for Computing the EPR Powder Spectrum
Function of Site Symmetrya

Integration domain

X, Y, Z
X, Y, Z
X, Y, Z
X, Y, Z
X, Y, Z; 2X, Y, Z
X, Y, Z
X, Y, Z; 2X, 2Y, Z

4
4, B4

24 X, Y, Z; 2X, Y, Z; 2X, 2Y, Z; X, 2Y, Z

d are taken as the reference coordinate frame. Theg andA tensors are consider
LE
Re
s a

s

3, B

r an
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187MODELING EPR POWDER SPECTRA
erimental spectrum can be conducted by the two follow
teps:

First, the spin Hamiltonian parameters can be adjuste
rder to minimize the sum of the squares of the differe
etween observed and calculated positions of selected po

ines, using a separate module referred to as EPRPLP.
Second, the Hamiltonian parameters, the line-profile pa

ters, and the scale factors can be adjusted by a direc
pectrum fitting procedure, i.e., minimizing the sum of
quares of the difference between the experimental and c
ated EPR intensities, over every point of the spectrum.
econd option is performed by the main code ZFSFIT, w
ses the same input file as EPRPLP.

In both codes, the same least-squares minimizing rou
MDER1 (55), based on the Levenberg–Marquardt algorit

s used.
Full-spectrum fitting, however, requires the set of in

arameters to be close to the solution. An initial refinem
sing selected line positions, is then generally required, an
rucial step of this analysis consists in indexing powder li
his task may become extremely difficult when dealing w

wo or more paramagnetic centers with highS values and low
ite symmetries. Indeed, for a given S (and I) center, the l
he site symmetry is, the higher the number of powder lines
he more complex the angular dependencies are. Moreov
s important to remark that, in the general case, e.g., tric
ymmetry, the “turning point” directions of a transition in
ymmetry planes (e.g.,ZOX, XOY, YOZ . . . ) generally de
end on the spin Hamiltonian parameters and do not c
pond to the principal axes of the EPR center. As a co
uence, possible changes in the “turning point” directions

o be taken into account when fitting line positions. The in
turning point” directions can be determined by comparing
xperimental spectrum with a computed spectrum and
orresponding angular dependencies computed in the sy
ry planes. Changes in “turning point” directions can be
essed by comparing experimental powder data with a s

TABLE 2
EPR Parameters (cm21) of Mn21 Center

at Ca(1) Site in Fluoroapatite

g
B2

0

(cm21)
Axy

(cm21)
Az

(cm21)
Temp.

(K) References

.0002 0.0138 0.0087 0.0087 300 This stu

.0005 0.0133 0.0086 0.0088 300 47

.9919 0.0133 0.0086 0.0089 300 48

.0000 0.0157 0.0086 0.0086 77 49

FIG. 3. Experimental and calculatedX-band powder spectra at 300 K o
pper part: angular dependencies where transitions are labelednmp; lower p
nd G0 5 0.0015 T; (c) computed spectrum withsB 2 5 0 cm21 and G0 5
2
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pectra and angular dependencies computed with various
ltonian parameters.

For instance, rough estimation of the second-order
arameters can generally be obtained by adjustingX-band line
ositions. The refined parameters can then be used to co

he correspondingX- and Q-band powder spectra. Indexi
emaining experimental lines is then possible even when
lex angular dependencies are observed, using angular d
encies computed in the symmetry planes. Better accura

he definition of the Hamiltonian parameters can be achi
y including these line positions and associated “turn
oints” in the refinement procedure. Accurate second-

ourth-order ZFS parameters can be extracted from po
ata, using this feedback approach, i.e., indexing—re
ent—spectra computation, as demonstrated by the exa
iven below.

.2. No ZFS Term

For S5 1
2, no ZFS parameters are defined. As a consequ

he axis frame where theg-tensor is diagonal, i.e., the princip
xis frame of theg-tensor, is preferably taken as refere
oordinate frame. In that case, the indexing procedure is
le, since the {u, f} directions of the powder lines alwa
oincide with the reference coordinate axes. Therefore
omputation of the spectrum can be restricted to one-eigh
he integration sphere, i.e., the (X, Y, Z) face of the octahedro
efined in Section 3.1.

.3. Second-Order ZFS Terms

For S. 1
2 and whatever the site symmetry, there exists a

f orthonormal axes,X, Y, andZ, such thatB2
1, B2

21 andB2
22

erms vanish and such thatuB2
0u $ uB2

2u. This axis frame, calle
he principal axis frame of the second-order ZFS tenso
hosen as the reference coordinate system for all comput
n the following text, although the code proposed includesB2

1,
2
21, andB2

22 terms, if needed. When S. 1
2, several cases ha

o be distinguished, depending on the possible use o
ourth-order ZFS tensor.

TABLE 3
ZFS Parameters (cm21) of Fe31 Center

at Al31 Site in Corundum at 300 K

B2
0 60B4

0 60B4
3 Reference

.0561 20.0110 0.2181 This stud

.0559 20.0110 0.2198 57

Note. gvalue is taken isotropic at 2.0000.

ons at Al sites in an iron-doped polycrystalline corundum (0.025 wt% Fe2O3).
(a) experimental spectrum; (b) computed spectrum withsB 2

2 5 0.0007 cm21

015 T.
f Fe31 i
art:
0.0
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189MODELING EPR POWDER SPECTRA
For S 5 1 or S 5 3
2, the second-order ZFS tensor only

efined. The [u, f] directions of the powder lines, i.e., turni
oints, generally coincide with the reference coordinate a

.e., principal axes of the second-order ZFS tensor, as for31

S 5 3
2) ions (Fig. 1). Since the fourth-order ZFS tenso

xpressed in its principal axes, the exact computation o
pectrum can be restricted to the (X, Y, Z) face of the octa
edron. Besides, when the ZFS terms have the same or
agnitude as the Zeeman term (e.g.,56), [u, f] directions o

ome powder lines may not coincide with any principal a
hat is clearly shown in Fig. 1, where the sharp 231 transition

s stationary around the {90, 41} orientation. This remark sh
ight on the necessity to take into account the possible ch
n orientation of the “turning points” of the transitions wh
djusting ZFS parameters for fitting line positions. When
ectly fitting the full spectrum, this problem is obviously l
rucial because powder lines are obtained from nume
ntegration.

For S. 3
2, second- and fourth-order ZFS tensors may bot

TABLE 4
Experimental and Calculated Line Positions (Tesla) for Fe31

Center at Al31 Site in a Synthetic Corundum at 300 K

Transition
X-band

(n 5 9.7768 GHz)
Q-band

(n 5 34.0603 GHz)

mp [u, f] Exp. Calc. Exp. Calc.

121 X 0.1379 0.1384 0.8713 0.87
121 Y 0.8713 0.8712
131 Z 0.0707 0.0717
141 X 0.2595 0.2594
231 X 0.0839 0.0840 1.0329 1.03
232 X 0.1120 0.1120
231 (6, 0) 0.7801 0.7782
231 (30, 0) 0.0339 0.0339
241 (9, 0) 0.3226 0.3240
251 (30, 180) 0.4477 0.449
341 X 0.3436 0.3437 1.1813 1.18
341 Z 1.2164 1.2161
341 (35, 0) 1.3235 1.322
341 (35, 180) 1.2965 1.296
342 (20, 0) 0.2469 0.2482
343 (29, 0) 0.5928 0.5920
343 (27, 180) 0.5494 0.5500
451 X 1.3289 1.3280
361 X 0.5029 0.5038
451 Z 0.7978 0.7989
452 (66, 0) 0.5859 0.5862
452 (63, 180) 0.5146 0.5150
451 (70, 0) 1.3961 1.393
561 X 0.7389 0.7356
561 Z 0.5413 0.5430

FIG. 4. Experimental and calculatedQ-band powder spectra at 300 K
e2O3). Upper part: angular dependencies where transitions are labelednmp; lo
m21 and G0 5 0.002 T; (c) computed spectrum withsB 2 5 0 cm21 and G
2

s,

he

r of

.

s
ge

i-

al

e

onzero. When fourth-order ZFS terms are sufficiently sma
e neglected, as for Mn21 (S 5 5

2, I 5 5
2) at the Ca(1) site i

patite with site symmetry23 (Table 2, Fig. 2), the {u, f}
irections of the powder lines generally coincide with
eference coordinate axes, i.e., the principal axes of the se
rder ZFS tensor, and the exact computation of the spec
an be restricted to the (X, Y, Z) face of the octahedron. On t
ontrary, when fourth-order ZFS terms significantly contrib
o the fine structure, complex angular dependencies ma
bserved and the domain of integration may have to be

ended, especially for trigonal, monoclinic, and triclinic po
ymmetries.

.4. Fourth-Order ZFS Terms

Table 1 recalls the ZFS parameters and domain of inte
ion required for computing the powder spectrum as a func
f site symmetry. This table is constructed in agreement

he conventions used in the code, i.e., the principal axes o
econd-order ZFS tensor are chosen as the reference coo
ystem.
In case of cubic, hexagonal, and quadratic site symme

he computation of the spectrum can be restricted to the (X, Y,
) face of the octahedron, because the fourth-order ZFS t
an be expressed in its principal axes, which coincide
hose of the second-order ZFS tensor.

4.4.1. Trigonal site symmetry: Fe31 in aAl2O3 (corundum)
or trigonal site symmetry, onlyB2

0, B4
0 andB4

3 parameter
re nonzero. TheZ axis lies along the unique crystall
raphic threefold axis and theX axis is chosen such thatB4

23

anishes. In that case, the exact computation of the spe
an no longer be restricted to the (X, Y, Z) face of the
ctahedron, and integration also has to be done ove
2X, Y, Z) face. Although angular dependencies are sim
n the YOZ and 2YOZ planes, angular dependencies
everal transitions may differ between theZOX and ZO 2
planes, due to the trigonal symmetry of theO4

3 operator
n interesting example of this effect is given by the E
pectra of Fe31 substituted at the Al31 octahedron with sit
ymmetry3 in the corundum structure,aAl 2O3 (Tables 3
nd 4): at X band (Fig. 3), the 343 {29, 0} and 343 {27, 180}

ines are separated by 0.0434 T, and the 452 {66, 0} and 452

63, 180} lines are separated by 0.0713 T; atQ band (Fig
), the 341 {35, 0} and 341 {35, 180} lines are separated
.0270 T. In the case of Fe31 in corundum, the adjustment

hese line positions at bothQ-band andX-band frequencie
llows accurate determination of theB4

3 fourth-order param
ter, in agreement with single-crystal EPR data (57) (Table
). In addition, direct fitting of theX-band powder spectru
Figs. 3a, 3b) indicated that the underestimation of

Fe31 ions at Al31 sites in an iron-doped polycrystalline corundum (0.025 w
r part: (a) experimental spectrum; (b) computed spectrum withsB 2

2 5 0.0007
0.002 T.
of
we

0 5
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elative intensity of the 231 Z with respect to 341 Z and
41XY lines (Fig. 3c) could only be corrected by includ
small fluctuation around the axial symmetry (58), i.e.,

ncluding sB 2
2 5 0.0007 cm21 (Fig. 3b). This result sugges

hat structural accommodation of Fe31 for Al 31 substitution
ecreases the site symmetry of the host site. The und

imated intensities of the 231XY and 232XY lines are still no
xplained, but may be attributed to a failure of Eq. [1]

2] for accurately calculating intensities of weakly allow
ransitions in some cases. However, fitting of theX-band
pectrum recorded at 120 K (data not shown), where 231XY
nd 232XY lines disappear becauseB2

0 slightly increases
ields a better agreement than that in Fig. 3 and f
upports the existence of a nonzerosB 2

2 term.

4.4.2. Orthorhombic and monoclinic site symmetry: F31

n aAlOOH (diaspore). In the case of orthorhombic si
ymmetry, onlyB2

0, B2
2, B4

0, B4
2, and B4

4 parameters ar
onzero. TheZ axis, lying along the crystallographic tw

old axis whereuB2
0u is maximum, corresponds to a twofo

xis of the second- and fourth-order ZFS tensors. TheX axis
s chosen such thatB2

22, B4
22, and B4

24 simultaneousl
anish and the computation of the spectrum can be restr
o the (X, Y, Z) face of the octahedron. For all the po
ymmetries listed above, principal axis frames of the
nd- and fourth-order ZFS tensors coincide or are relate
xis permutations. For lower point symmetries, this is

onger the case.
In the case of monoclinic site symmetry, onlyB2

0, B2
2, B4

0,
4
2, B4

22, B4
4, and B4

24 parameters are nonzero. TheZ axis
ies along the unique crystallographic twofold axis, but nX
xis can be found such thatB2

22, B4
22, and B4

24 simulta-
eously vanish. According to the convention used in
resent code, theX axis is chosen such thatB2

22 vanishes. I
s then a twofold axis of the second-order ZFS tensor,
oes not correspond to any symmetry axis of the fou
rder ZFS tensor. As a consequence, eitherB4

22 or B4
24 or

oth are nonzero. This situation corresponds to the no

FIG. 5. Experimental and calculatedX-band powder spectra at 120
ependencies where transitions are labelednmp; lower part: (a) experiment
c) computed spectrum withsB 2

0 5 0 cm21 and G0 5 0.005 T. Note that
t the coalescence point in the spectrum computed with strain effec

TAB
EPR Parameters (cm21) of Fe3

B2
0 B2

2 60B4
0 60B4

2

.1505 0.0982 0.0120 20.009

.1473 0.0967 0.0126 20.016

Note. gvalue is taken isotropic at 2.0000.
a Absolute sign ofB2

0 was not determined.
b Original ZFS parameters reported in (59) have been transformed into th

Pbnmspace group) using the rotation matrices given in (31).
es-

y

ed

c-
y

o

e

t
-

o-

ncidence, in theXOY plane only, of the second- a
ourth-order principal axis frames. As a consequence
ntegration domain has to be extended to the (2X, 2Y, Z)
ace of the octahedron.

An interesting example of monoclinic site symmetry
iven by the EPR spectra of Fe31 substituted at the Al31 site
ith site symmetrym, in the diaspore structure,aAlOOH.
he Fe31 center in diaspore was first studied in (59), where
FS parameters obtained from single-crystal EPR data
eported (Table 5). As explained in (59), a particularity o
he diaspore structure is that, although there is a un
rystallographic Al site, the (010) mirror (in Pbnm SG) yi
wo sets of magnetically nonequivalent Fe31 sites. As a
onsequence, EPR single-crystal spectra of diaspore e
wo Fe31 centers in equal proportions, with the same
ymmetry, but with distinct orientations with respect to
rystallographic coordinate frame. This difficulty is n
ncountered when analyzing EPR powder data, wher

wo distinct orientations of the Fe31 centers contribute to th
ame powder spectrum. In the present study, ZFS par
ers of the Fe31 center in diaspore were refined by adjust
imultaneously 19 line positions fromX- andQ-band pow
er data (Table 5). The good agreement between exper

al and calculated line positions (Table 6), as well as
ween experimental and computed powder spectra atX-band
Fig. 5) andQ-band (Fig. 6), validates the accuracy of
efined ZFS parameters of the present study, even at f
rder. At Q-band, underestimation of the intensities of
31 and 232 lines near theZ-direction may be related
referential orientation along theb-axis/Z-axis direction
he correctness of the refined ZFS parameters is also
orted by the consistency between the present study an
ingle-crystal study (59) (Table 6) and previousX-band
owder spectrum simulations (18). Therefore, the prese
tudy confirms that the noncoincidence between the sec
nd fourth-order principal axes remain small, as alre
uggested (59). This “pseudo”-coincidence explains why

of Fe31 ions at Al site in natural diaspore from Turkey. Upper part: ang
pectrum; (b) computed spectrum withsB 2

0 5 0.0025 cm21 andG0 5 0.005 T;
oping” transitions, 23122, 34223, and 45122, do not give rise to any “glitch
ee Section 3.5).

5
enter at Al31 Site in Diaspore

60B4
4 Temp. (K) Reference

20.0588 120 This studya

20.0514 300 (59)b

ame coordinate frame as in the present study, i.e.,Z axis along the uniqueb-axis
K
al s
“lo
t (s
LE
1 C

5
0

e s
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193MODELING EPR POWDER SPECTRA
easonable agreement is found when neglectingB4
22 andB4

24

arameters, i.e., when assuming an orthorhombic site
etry instead of the true monoclinic site symmetry of
ost site.

4.4.3. Triclinic site symmetry: Fe31 in aAl(OH)3 (gibbsite).
n the case of triclinic site symmetry,B2

0, B2
2, B4

0, B4
1, B4

21,
4
2, B4

22, B4
3, B4

23, B4
4, andB4

24 parameters are nonzero a
o crystallographic symmetry axis exists. TheZ axis is

aken along the twofold axis of the second-order ZFS ten
hereuB2

0u is maximum. TheX axis is chosen such thatB2
22

anishes. These axes do not correspond to any symm
xis of the fourth-order ZFS tensor and all fourth-or

erms are nonzero. This situation corresponds to a
oncoincidence of the second- and fourth-order princ
xis frames. In that case, the integration domain has t
xtended to the whole half-sphere.
An example of such a complex situation is given by

PR spectra of Fe31 substituted for Al31 in the gibbsite
tructure,aAl(OH) 3. The gibbsite structure is characteriz
y dioctahedral layers containing two distorted octahe
l sites, Al1 and Al2, both with triclinic site symmetry1

60). Both Al octahedra are defined by six hydroxyl gro
ith similar average Al–O distances, 1.902(60.005) Å and
.905(60.005) Å, for Al(1) and Al(2) respectively, an
ave similar long-range environments. AnX-band EPR
owder spectrum of the Fe31 center in gibbsite was fir
eported in (61), where the similarity of this spectrum

FIG. 6. Experimental and calculatedQ-band powder spectra at 120
ependencies where transitions are labelednmp; lower part: (a) experiment
c) computed spectrum withsB 2

0 5 0 cm21 and G0 5 0.006 T. Note tha
ransitions, 242 2 232, do not give rise to any “glitch” in the spectrum

TABLE 6
Experimental and Calculated Line Positions (Tesla) for the Fe31

Center in a Natural Polycrystalline Diaspore (Turkey) at 120 K

Transition
X-band

(n 5 9.4240 GHz)
Q-band

(n 5 34.0095 GHz)

mp [u, f] Exp. Calc. Exp. Calc.

121 X 0.3791 0.3791 1.1500 1.148
121 Y 0.0731 0.0724 0.2703 0.268
131 Z 0.0929 0.0952
231 Y 0.0298 0.0269
241 Y 0.0591 0.0590
341 X 0.1625 0.1614 0.7410 0.735
341 Y 0.2012 0.2018 1.3129 1.310
342 Y 0.5000 0.5004
343 Y 0.8547 0.8526
341 Z 0.1400 0.1394 1.4439 1.441
341 (60, 180) 0.7130 0.717
351 Z 0.4212 0.4211
352 Z 0.5570 0.5538
561 Y 0.8416 0.8423
m-

r,

try
r
ll
l

be

al

hat of iron in kaolinite (Si2Al 2O5(OH)4) was noticed. Re
ently, evidence of Fe31 substitution at both triclinic Al site
n the dioctahedral layer of kaolinite has been demonstr
20). Second-order Stevens constants and a computeX-
and powder spectrum were reported. As sho

n Fig. 7, the X-band powder spectrum of an iron-dop
olycrystalline gibbsite sample is well modeled by c
idering the existence of two Fe31 centers, referred to her
fter as A and B (Table 7). Those two sites are unamb
usly distinguished atQ-band, where more than 40 sha

ines are observed (Fig. 8). The complexity of theQ-band
pectrum of the Fe31 centers in gibbsite sheds light on t
ecessity of fully computing EPR powder spectra and

ated angular dependencies in order to index experim
owder lines. Second- and fourth-order ZFS parameter
oth A- and B-centers (Table 7) were refined by simu
eously adjustingX-band andQ-band line positions (Tab
). The large numbers ofQ-band lines taken into account

he refinement, 23 and 9 for A- and B-centers respectiv
llowed very good relative accuracy in second-order
arameter values,#2‰ and #5‰ for A- and B-center
espectively, fourth-order ZFS parameter values being, h
ver, less accurate (Table 7). Triclinic site symmetr
bserved for the A-center, as indicated by the splitting
everal lines atQ-band (Table 8). Especially, angular d
endencies of the 351, 451, and 341 transitions differ be

ween theZOX and ZO2X planes and thus well constra
heB4

3 value. In the same way, angular dependencies of
he 252 and 341 lines differ between theXOY and XO2Y
lanes and thus constrain theB4

22 and B4
24 values. Eventu

lly, the complex angular dependency of the 341 line in the
5 2 region atQ-band constrains theB4

1, B4
21, and B4

23

alues. The triclinic distortion of the A-center stron
upports that this center is related to Fe31 ions substitute
or Al 31 ions at Al(1) and/or Al(2) structural sites. For t
-center, line broadening, mainly due to site-to-site flu
tion of the ligand field (sB 2

0 5 0.003 cm21), hinders the
bservation of any small splitting of angular dependen
f 341 or 451 transitions between theZOX and ZO2X
lanes. As a consequence, the B-center was describ
onoclinic site symmetry, theB4

22 and B4
24 values being

ell constrained by the splitting between theXOY and
O2Y angular dependencies of the 341 line atQ-band. The
-center likely corresponds to a structural site, with reg

o the significant temperature dependence of its ZFS pa
ters (62), although its local symmetry has not been ac
ately determined. The lack of information about the rela
rientation of the ZFS and the crystallographic coordin

of Fe31 ions at Al site in natural diaspore from Turkey. Upper part: ang
pectrum; (b) computed spectrum withsB 2

0 5 0.0025 cm21 andG0 5 0.006 T;
oping” transitions, 13122, 24122, and 35122, as well as the “true crossin

mputed with strain effect (see Section 3.5).
K
al s
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194 MORIN AND BONNIN
rames, respectively, hinders a crystallographic assign
f A- and B-centers in relation to Al(1) and Al(2) octahe

n the gibbsite structure.
Direct full-spectrum fitting was performed in order to de
ine the relative amounts of A- and B-centers in the gibb

tudied. Best fits at both frequencies were obtained by in
ng 65 6 5% and 356 5% of A- and B-centers, respective
Figs. 7, 8). Such an uneven site distribution may be relat
asier relaxation processes for the A-center than for th
enter, as suggested by the significantly lowerB2

0 and sB 2
0

alues for the A-center (0.0869 cm21 and 0.0009 cm21,
espectively) than for the B-center (0.1400 cm21 and 0.003
m21, respectively).

5. CONCLUSION

The present code is a powerful tool for interpreting E
owder spectra. It is especially useful when dealing w
pin Hamiltonians where the Zeeman, the fine struc
nd/or the hyperfine structure terms have the same
f magnitude, because direct diagonalization of the

TAB
EPR Parameters (cm21) of A and B Fe31 Cent

B2
0 B2

2 60B4
0 60B4

1 60B4
21

-center 0.0869 0.0480 20.0027 20.003 20.014
-center 0.1400 0.0695 0.0141 0 0

Note. gvalue is taken isotropic at 2.0000; uncertainties are on the la

FIG. 7. Experimental and calculatedX-band powder spectra at 300 K
omputed spectrum with 65% A-center and 35% B-center; a spline basel
pectrum of A-center; (d) computed spectrum of B-center.
nt

-
e
d-

to
B-

h
e,
er
ll

pin Hamiltonian is used. The development of an effic
lgorithm for determining resonance fields, as well as
se of a fast algorithm for integrating angular depend
ies over the orientation sphere, allows computation
mooth EPR powder spectra on wide field ranges w
hort CPU times. For instance, using an IBM RISK6000
omputer, the computation of theQ-band powder spectru
f the Cr31 center (n 5 4) in a-Al 2O3 (Fig. 1e) required 4
PU time with 50 steps in theZOX plane, 3182 field
teps of 0.0005 T, and aH limit value of 1.0 T. In the sam
ay, the computation of theQ-band powder spectrum of th
-Fe31-center (n 5 6) in gibbsite (Fig. 8c) required 302
PU, with 5100 elementary triangles (integration on
alf-sphere), 1791 field steps of 0.001 T, and anH limit value
f 0.05 T. The present examples demonstrate that acc
econd- and fourth-order ZFS parameters as well as h
ne parameters can be refined from EPR powder d
rovided thatX-band andQ-band data are fitted simult
eously. In addition, relative amounts of distinct centers
e easily determined. For instance, quantitative analys

7
at Al31 Sites in a Synthetic Gibbsite at 300 K

60B4
2 60B4

22 60B4
3 60B4

23 60B4
4 60B4

24

0.033 20.048 20.045 20.050 20.014 20.033
0.008 20.011 0 0 0.129 20.065

igit.

Fe31 ions in synthetic gibbsite (0.025 wt% Fe). (a) Experimental spectrum
, accounting for super-paramagnetic iron-oxide signals, has been addedcomputed
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196 MORIN AND BONNIN
omplex multiple-center spectra, including more than
istinct radiation-induced defect centers (S5 1

2; I # 3
2), was

ecently performed on a set of borosilicate glasses50).
inally, the first-order perturbation approach for compu
ite-to-site fluctuations of the spin Hamiltonian parame
ppears to be useful for better understanding EPR
hapes, in relation to structural disorder and structura
axation phenomena. However, this approach may fail w
ealing with S. 1

2 centers in poorly ordered minerals a
oncrystalline solids. In those cases, distributions of

TAB
Experimental and Calculated Line Positions (T

Transition (n 5

nmp [u, f] Exp.

A-center

341 Z 0.1288
231 {60, 290} 0.15
231 {60, 90} 0.15
341 {90, 17} 0.2062
121 {90, 2} 0.2707
461 Z
141 {75, 90}
141 {90, 0}
121 {90, 96}
252 {41, 90}
252 {41, 290}
351 {14, 0}
351 {14, 180}
351 {45, 0}
351 {45, 180}
451 Z
231 {90, 79}
231 {90, 5}
341 {90, 11}
341 {90, 178}
341 {90, 86}
341 {90, 63}
341 {90, 253}
451 {67, 0}
451 {67, 180}
341 {30, 0}
341 {30, 180}

B-center

341 Z 0.1305
341 {90, 10} 0.1928
141 Y
131 Y
121 Y
351 Z
231 {90, 87}
231 X
341 {90, 9}
341 {90, 241}
341 {90, 33}

a Note that few powder lines lie along the principal axes.
e

g
s
e-
e-
n

S

arameters are generally no longer Gaussian, but are a
etric or exhibit multiple modes. Modeling EPR spectra
aramagnetic centers in such disordered materials req
ultiple-spectra computation (21). Future extensions of th

ode are in progress and will concern nonlinear inver
ethods for analyzing site distributions in poorly orde
aterials. The source code of the program is avail
ithout charge to academic users from request to the

hors, or at the following URL: http://www.lmcp.jussieu.
morin/zfsfit.html.

8
a) for the A- and B-Fe31 Centers in Gibbsitea

and
200 GHz)

Q-band
(n 5 34.0040 GHz)

Calc. Exp. Calc.

0.1289
0.1489
0.1505
0.2059
0.2700

0.1378 0.1379
0.1654 0.1640
0.2165 0.2160
0.4640 0.4651
0.4986 0.4989
0.5029 0.5029
0.5785 0.5791
0.5832 0.5856
0.6005 0.6013
0.6108 0.6110
0.6624 0.6632
0.7909 0.7906
1.0288 1.0291
1.0480 1.0498
1.1444 1.1447
1.1563 1.1570
1.1650 1.1644
1.1760 1.1758
1.2436 1.2427
1.2585 1.2487
1.3200 1.3210
1.3295 1.3293

0.1305
0.1926

0.0562 0.0547
0.1069 0.1086
0.3061 0.3077
0.3970 0.3969
0.6795 0.6790
0.7875 0.7884
0.8475 0.8472
0.8710 0.8712
0.8950 0.8947
LE
esl

X-b
9.4



of
t

w n i
(

A ve
f
e
T e
m -
l
o

w

w s,
a
i

197MODELING EPR POWDER SPECTRA
APPENDIX

Stevens’ operatorsOk
6q correspond to linear combinations

ensor operators and can be written as follows (31):

O k
0 5 Ok

0

O k
q 5

1

2
~Ok

q 1 Ok
2q!

O k
2q 5

1

2i
~Ok

q 2 Ok
2q!

here theOk
6q are the nonnormalized tensor operators give

63). Algebraic forms of theOk
q are written as follows (33):

O 2
0 5 3Sz

2 2 S~S1 1!

O 2
1 5

1

4
@Sz~S1 1 S2! 1 ~S1 1 S2!Sz#

O 2
2 5

1

2
~S1

2 1 S2
2 !

O 4
0 5 35Sz

4 2 ~30S2~S1 1! 2 2 25!Sz
2

2 6S2~S1 1! 2 1 3S4~S1 1! 4

O 4
1 5

1

4
@~7Sz

3 2 ~3S2~S1 1! 2 1 1!Sz!~S1 1 S2!

1 ~S1 1 S2!~7Sz
3 2 ~3S2~S1 1! 2 1 1!Sz!#
n

O 4
2 5

1

4
@~7Sz

2 2 S2~S1 1! 2 2 5!~S1
2 1 S2

2 !

1 ~S1
2 1 S2

2 !~7Sz
2 2 S2~S1 1! 2 2 5!#

O 4
3 5

1

4
@Sz~S1

3 1 S2
3 ! 1 ~S1

3 1 S2
3 !Sz#

O 4
4 5

1

2
~S1

4 1 S2
4 !.

lgebraic forms of theOk
2q are obtained from the abo

ormulas by substituting2i (S1
n 2 S2

n ) for (S1
n 1 S2

n ). Matrix
lements ofO2

0, O2
2, O4

0, O4
2, O4

3, andO4
4 are tabulated in (4).

he matrix elements ofO2
1 andO4

1 are easily obtained from th
atrix elements ofO2

1, O2
21 andO4

1, O4
21, respectively, tabu

ated in (63). The matrix elements of theOk
2q are thoroughly

btained from those of theOk
q as follows (31):

^m9SuO k
2qumS& 5 1i ^m9SuO k

qumS& if m9S , mS

^m9SuO k
2qumS& 5 2i ^m9SuO k

qumS& if m9S . mS.

According to these definitions, the ZFS term for S# 5
2 is

ritten as

HZFS 5 O
k52,4

O
q52k

k

Bk
qO k

q

here the so-called Stevens constant, or ZFS parameterBk
q,

re real. For instance, the matrix expression ofH ZFS for S 5 5
2

s written as
U1
5

2
L U1

3

2
L U1

1

2
L U2

1

2
L U2

3

2
L U2

5

2
L

K1
5

2
U 10C 2

0 1 C 4
0

K1
3

2
U

2Î5 C2
1

2
1

2Î5
C4

1 22C 2
0 2 3C 4

0

K1
1

2
U

Î10 C2
2 2Î2 C2

1

1
3

2Î10
C4

2 1
1

2Î2
C4

1 28C 2
0 1 2C 4

0

K2
1

2
U 2

1

2Î10
C4

3

3Î2 C2
2

2
1

2Î2
C4

2 0 28C 2
0 1 2C 4

0

K2
3

2
U 2

1

Î5
C4

4 0

3Î2 C2
2 Î2C2

1

2
1

2Î2
C4

2 2
1

2Î2
C4

1 22C 2
0 2 3C 4

0

K2
5

2
U 0 2

1

Î5
C 4

4
1

2Î10
C 4

3

Î10 C 2
2 Î5 C 2

1

1
3

2Î10
C 4

2 1
1

2Î5
C 4

1 10C 2
0 1 C 4

0



w
5 to
t

lp i
p r th
i l a
n fon
a rs a
a d th
q

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3
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here the upper triangular matrix is obtained by^m9SuH ZFSumS&
^mSuH ZFSum9S&* and where theCk

q coefficients are related
he Bk

6q ZFS parameters as follows:

C2
0 5 B2

0

C2
q 5 B2

q 1 iB 2
2q, q 5 1, 2

C4
0 5 60B4

0

C4
q 5 60~B4

q 1 iB 4
2q!, q 5 1, 2, 3, 4.
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