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A new modeling code, ZFSFIT (standing for Zero Field Split-
ting FITting), written in FORTRAN 77 is proposed. It is designed
for computing and fitting EPR powder spectra described by any
spin Hamiltonian including second- and fourth-order ZFS terms
(S = % andlor a hyperfine term (I < 7). Based on numerical
diagonalization of the spin Hamiltonian, this code computes the
powder spectrum, the calculated angular dependencies, and the
energy levels at any orientation. Least-squares refinement of the
spin Hamiltonian parameters is performed either by adjusting
powder line positions (EPRPLP module) or by directly fitting the
powder spectra (ZFSFIT code). Especially, simultaneous fitting of
EPR powder line positions recorded at distinct frequencies im-
proves the accuracy of the refined EPR parameters. Superhyper-
fine effects as well as broadening effects due to site-to-site distri-
bution of g-, A-, and ZFS parameters are treated using first-order
perturbation theory and can also be refined. Parameters for several
distinct centers can be fitted simultaneously, allowing quantifica-
tion of their relative amounts in the sample. After a description of
the algorithm, determination of second- and fourth-order ZFS
parameters of Cr®*, Mn**, and Fe®* centers in low-symmetry sites
in minerals are treated, including first evidence of structural Fe®*
centers in «Al(OH),. The code is available without charge to
academic users from the authors. © 1999 Academic Press
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1. INTRODUCTION

Electron paramagnetic resonance (EPR) spectrosco
sometimes referred to as electron spin resonance spectrosc

site distribution of paramagnetic impurities in solids, as well a:
the relaxation processes related to their structural accommaoc
tion by the host matrix@—§).

Single-crystal EPR analysis yields both the whole set of spi
Hamiltonian parameters and the orientation of the principe
axes of the local ligand field with respect to crystallographic
axes. In polycrystalline solids, this relative orientation canno
be determined because an EPR powder spectrum is a sumr
tion over all orientations of the local ligand field with respect
to the static applied field directior®). The interpretation of
the EPR powder spectra is then only based on the determin
tion of the spin Hamiltonian parameters, whose values refle
the local symmetry of the paramagnetic center. Numerice
integration of the EPR absorbance on the whole orientatio
sphere being time-consuming, interpretation and modeling ¢
powder EPR spectra have been often treated using perturbat
theory. Examples of automated fitting of EPR powder spectr
for S = 3 species, based on high order perturbation calculé
tions, were given in a recent papé&dy. In case of higher spin
values (S>> 3), perturbation calculations are based on the
relative importance of the zero field splitting (ZFS) and of the
Zeeman splitting. Either strong magnetic field approximatior
(ZFS < hv) (4,11, 19 or strong ligand-field approximation
(ZFS> hv) (13-19 have been used for analyzing fine struc-
ture spectra of transition elements.

These approximations are, however, clearly inapplicable i

Wcase of an intermediate ligand field (ZEShv), as, for

(ESR), is a powerful tool used in several fields of physiciStance, for F& and Cr" ions in many oxides and silicates

chemistry, and biochemistryl{2). Indeed, the low-level de- (). High-order perturbation calculationd§) or straightfor-
tection threshold (ppm) and the structural sensitivity of EPWard numerical diagonalization of the spin Hamiltonian (see
allow analysis of the nature and localization of paramagneff’ instance,17-2) are then required to determine reliable
point defects 3) as well as the atomic environment of paral€sonance fields values. For>83, e.g., for S-state ions, the
magnetic ions, mainly first-row transition ions and lanthanid@’9e number of allowed transitions occurring between an
ions, in various solids and liquidg (5). For instance, quanti- inside the Kramers’ doublets, makes it difficult to index the
fication of radiation-induced paramagnetic defects by EPRE&R lines in powder studie&%, 23, and even in single-crystal

used for dating and dosimetr§)( EPR is also used to study thestudies g4). Furthermore, complex angular dependencies, ok
served for low site symmetry, can only be interpreted by

! To whom correspondence should be addressed. Fax: 33 1 44 27 37 g&icluding fourth-order ZFS terms (see, for instan2é-27,
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MODELING EPR POWDER SPECTRA 177

although these terms are still generally omitted in powder ERfRamiltonian. It is related to an effective spin S for the grounc
studies 19-23. Fourth-order ZFS terms must, however, bstate such that the number of levels is 2851 (4).
taken into account to unambiguously distinguish between line-We used the following spin Hamiltonian to describe the
splitting due to complex angular dependencies and that relafeR spectra of (S 3, | = ) centers:
to the presence of distinct paramagnetic centers (see Section 4).
For triclinic site symmetry, single-crystal EPR analysis of the
relative orientations of the pseudo-symmetry axes of the
fourth-order ZFS tensor with respect to those of the crystallo-
graphic coordination polyhedra is a powerful method for lo-
calizing paramagnetic impurities and for assessing local relax-
ation of the host structure8(28-30. Unfortunately, since where the three right-hand terms correspond to the Zeem:
orientation of the fourth-order ZFS axes cannot be determingderaction, the quadrupole fine structure interaction and th
from the EPR study of polycrystalline samples, physical intehyperfine interaction.
pretation of fourth-order terms derived from powder data is In the Zeeman terng, B, H, andS are the gyromagnetic
then restricted to the qualitative description of the site symmiensor, the electronic Bohr magneton, the applied magnet
try. The use of fourth-order terms, however, significantly imfield vector, and the spin operator in the 251 dimension
proves the accuracy of second-order terms and is hecessarysfmce, respectively. Thggtensor is generally anisotropic be-
correctly modeling powder spectra, a striking point for quarcause of spin—orbit coupling.
tifying relative amounts of distinct paramagnetic centers. The quadrupole fine structure term, which yields a partia
Successful attempts at computing EPR powder spectrarefmoval of the primary 2S- 1 degeneracy, i.e., the so-called
S > 3 centers using numerical diagonalization of the spirero-field splitting (ZFS), is related to indirect effects of ligand
Hamiltonian are reported in the literaturé7¢-27). However, field and covalency on the spin states only i£S1, and then
among these works, none deals with complex=(3 centers in reflects the local symmetry of the ligand field. The ZFS tern
triclinic symmetry where all fourth-order ZFS terms are recan be expressed by a linear combination of polynomial ope
quired. Moreover, no procedure have been proposed for fittiagprs of ordek (with k even anck = 2S+ 1) in S, S, S,
EPR powder data in such cases, although this facility offers thaving the same transformation properties as spherical he
ability to fully determine the Hamiltonian parameters of unmonics. Operators with odl values are not considered be-
known centers, as will be shown in Section 4. cause they are not invariant with time reverséd). (Several
The present computation code, based on numerical diagiefinitions of these operators as well as various notations we
nalization of the full spin Hamiltonian, is designed for comused in the EPR literature, as extensively reviewed).(In
puting and fitting EPR powder spectra described by any spime code proposed here, the Stevens operaB®s Q, “, and
Hamiltonian including fourth-order ZFS terms (3) and/or the associated real Stevens constBgf, were chosen because
hyperfine structure (& %). It constitutes a significant improve-they are the most often used in the EPR literatdrer(, 31-33.
ment for understanding the complex EPR powder spectra égebraic expressions of these operatorsker 2 and 4 and
countered when ZFS= hv. After a definition of the spin matrix elements of the ZFS term in the=S§ case are given in
Hamiltonian used (Section 2), the computation algorithm, thke Appendix.
time-reducing optimizations and the modeling of EPR powder When analyzing powder EPR spectra, by contrast with sin
lineshapes will be detailed (Section 3). Fluctuations of the ERfRe-crystal EPR analysis, the relative orientation between cry.
parameter from site to site, which are very common featurestallographic and ZFS principal coordinate frames cannot b
natural and synthetic minerals, are taken into account and ussdessed. In order to reduce the number of free parameters,
as indicators of structural disorder. Then, it is shown, bgoordinate frame will be chosen such that the expression of t
analyzing EPR powder spectra ofFén some polycrystalline ZFS tensor is as simple as possible. The choice of the referen
solids (Section 4), that the present code is a powerful tool fooordinate frame as a function of site symmetry, in the powde
deriving accurate second- and fourth-order fine structure pmse, is discussed with the help of examples in Section 4. Ti
rameters from EPR powder data, as well as for assessgeneral rule is that the principal axis frame of the second-ord

k
H=BH-g-S+ > > BIOI+S-A-I, [1]

k=2,4 q=—k

relative site occupancies of impurities in minerals. ZFS tensor is taken as the reference coordinate frame. Wh
the site symmetry of the paramagnetic center is higher the

2. DEFINITION OF THE SPIN HAMILTONIAN monoclinic, second- and fourth-order principal coordinate
USED IN THE CODE frames coincide or are mutually related by axis permutation:

In contrast, for monoclinic and triclinic site symmetries, prin-

An EPR spectrum is due to electronic transitions betweeipal axes of the second-order and fourth-order ZFS tensors

electronic-spin levels which are hard to calculate from the totabt coincide and angular dependencies may become compl
Hamiltonian of an atom surrounded by atom neighbors, espgdewever, when the angle between the principaixes of the

cially in low site symmetry. A solution of the problem lies insecond- and fourth-order ZFS tensors, respectively, remail

the use of a phenomenological Hamiltonian called the spsmall, this rotation can be neglected. In such cases, the rot
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tions of the fourth-order principal axes in th@Y plane are |,.(6, ¢), are much weaker than the angular dependencies:
easily accounted for by the introduction Bf, ° terms. resonance field positions and have sometimes been neglec
In the hyperfine termA, S, andl are the hyperfine tensor, (15). However, transition probabilities are functions @, {}
the electronic-spin operator in the 251 dimension space, andand have to be computed to yield the right intensities, espt
the nuclear-spin operator in the (2t 1)-dimension space, cially for weakly allowed transitions. For each transition, the
respectively. The nuclear quadruple interactiof® - | and the summation on the orientation sphere yields steps or peaks
nuclear Zeeman interactiggyH - gy - | may be nonnegligible the absorbance function (Fig. 1d) when the first derivative ¢
in some cases, and principal axes of gheA-, and ZFS tensors the angular dependency with respector ¢ vanishes. In an
may significantly differ 84—-36. However, implementing - EPR powder spectrum, observed lines only correspond to the
P -1 andB\H - gy - | terms and all possible noncoincidenceparticular {0, ¢} directions, often called “turning points”1g)
between principal axes dj, second-order ZFS, fourth-ordersince the spectrum is experimentally recorded as the derivati
ZFS, A, gn, andP tensors would yield a large number of freeof the absorbance function with respect to magnetic fiels
parameters, 3+ 5 + 9 + 6 + 6 + 5 = 34, per center in strength (Fig. 1e). Therefore, the smoothness of a comput
triclinic symmetry. Since present applications of our codéPR powder spectrum crucially depends on the size and tl
focus on ZFS terms in low-symmetry cases, we reduced thember of the elementary solid angles, taken into account |
maximum number of parameters tot32 + 9 + 3 = 17 per the summation. As a consequence, optimization of the spa
center in a triclinic crystal field by neglecting, andP terms patrtition is critical for reducing computation time.
and restrictingA andg to be diagonal in the second-order ZFS Various partitioning schemes, performing the integratior
principal axes. Under these assumptions, the Zeeman tewwusr a set of approximately equal solid angles, have bee
becomeBH - g- S = BH(g.n,S; + g,n,S, + g.,n,S,), where proposed in the literature for modeling magnetic resonanc
H is the magnetic field modul&, = sin 6 cos¢, n, = sin # powder spectra. Those include the “igloo” methad)(used in
sin ¢, andn, = cos# are the direction cosines of the magnetithe QPOW code, a spiral integration meth8d)( an equilat-
field vector in second-order ZFS principal axes, and the hgral triangular partition38) and, more recently, the SOPHE
perfine term is reduced 8- A - 1 = S,Al + S A,l, + method based on a triangular partition with elementary trian
S,A,l,. Nuclear quadruple interaction- P - | and nuclear gular sections having exactly the same solid anf. (
Zeeman interactiogyH - gy * | as well as off-diagonal terms It is now well accepted these methods have at least two ma
of g- andA-tensors could be included in future versions of thadvantages with respect to a classical partition using, abf
code, taking advantage of the full diagonalization procedursguare network with constaftand ¢ steps:

(i) The number of computed orientations is severely re
duced since each solid angle has approximately or exact

Reliable interpretation and least-squares fitting of EPR po®iMilar sections. This avoids the excessive computations ari
der spectra require an accurate modeling of EPR powder lifg@ from classical square grid partitions, when varyifidor
shapes. Complex shapes may result both from the intringi@all values o (38). _ _

EPR lineshapes of the individual transitions and from their (i) They do notintroduce any divergence in the absorbanc

3. COMPUTATION OF EPR POWDER SPECTRA

angular dependencies. intensity when6 approaches zero. This is not the case in the
square grid partition, where the contribution of each solid angl
3.1. Integration Scheme has to be weighted by sié (38).

An EPR powder spectrum can be considered as the summaln addition, triangular partitions are more suitable for fas
tion of the spectra corresponding to every orientatiénd{} of  interpolation algorithms, i.e., two-dimensional linear interpo-
the applied magnetic field direction with respect to the princlation in (38) and one-dimensional spline interpolations in the
pal coordinate system of the EPR center, whoskis is then SOPHE method 19), than the “igloo” method X7), which
taken as quantification axis. Eacl, {¢} direction defines a requires nonlinear two-dimensional interpolations. Finally, tri-
distinct diagram of energy levels, (H, 0, ¢) and a distinct set angular partitions where the integration grid is completely
of transitions (Fig. 1a, 1b). The functiod (0, ¢), which defined (9, 38 are preferable to the spiral methdir\ where
describes the variations of the resonance field of a given nodes are determined at each angular step using a minimizil
transition as a function of thet{ ¢}, direction is the so-called routine, as discussed i19).
angular dependency of this transition (Fig. 1c). Bon, = *+1 It is also important to remark that since energy levels ar
transitions, angular dependencies of transition probabilitiegenerally sorted and indexed as increasing energy valtie (

FIG. 1. Directleast-squares fitting of tf@-band spectrumy(= 34.004 GHz) at 300 K of the € center in synthetic polycrystalline ruby (0.03 wt%,Og).
(a) Spin levels along or Y; (b) spin levels alond; observed transitions are indicated by vertical lines; (c) angular dependencies in the ZOX plane, wi
transitions are labeledm,; (d) computed absorbance function; (e) EPR powder spectra: dotted line: experimental spectrum; plain line: computed spectrur
O = 1.9778;9, = 1.9807;B3 = —0.0623 cm?; og? = 0.002 cm?’; andI’y = 0.0035 T.
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21, 37, 38, it is necessary to ensure that transitions do natensionn, wheren is the dimension of the nuclear spin
involve any crossing levels when using interpolations for evatamiltonian. In contrast, EPR experiments are performe
uating angular dependenciekr(19, 37, 38 unless the inter- by sweeping magnetic field at constant frequency. As
polated resonance field values may not be actually relativedonsequence, for eacld{¢} orientation, the eigenproblem
the “same” transition along the interpolation range, as mehas to be solved as a function of the magnetic field strengtl
tioned by some authorsl8, 37, 3§. This problem becomes This complex issue can be expressed as a super-opera
crucial when using nonlinear interpolation methods, e.g., overoblem where resonance fields are solution ofnargen-
a whole “0¢” curve in the SOPHE method 9), especially for eralized eigenproblem, whera = [1, 2,..., (2S +
computing weakly allowed transitions occurring whem = 1)(21 + 1)] is the dimension of the electron spin Hamilto-
ZFS, as pointed out by Van Veet§). On the contrary, even nian 39). We first checked this algebraic method by using
if the linear interpolation scheme of Aldermast al. (38) the HGEEV routine 40) to solve the generalized Hermitian
appears to be less advanced that other methods baseceigenproblem of dimension®. Despite the fact that this
nonlinear interpolations, it offers the ability to generate thmethod is efficient whem is smaller than 8, it becomes
absorbance function relative to each elementary triangle indeere than four times slower than the method we preset
pendently from the data computed for other directions. Thergelow, when then value increases. In addition, the degen-
fore, the crossing of two levels within an elementary triangul@racy of the eigenvalues of the super-operator makes
solid angle does not affect the absorbance functions computgfficult to compute transition probabilities. Another way to
within other elementary solid angles. In addition, appropriafasnd the resonance field would consist in systematically
computation of line broadening, by taking into account theomputing eigenvaluek(H) of the spin Hamiltonian for
slope of the energy levels as a function téf allows local all H values, and then looking for transitions between
errors on transition indices to be compensated in some casEsnputed levels. This procedure is, however, time-consun
These aspects are detailed in Section 3.5. ing since the Hamiltonian is mostly diagonalized for non-
As a consequence, in the present code, the number of caesonance fields values.
puted orientations is minimized by using the partitioning and In the present code, we propose an efficient method consi:
interpolating scheme developed by Alderneral.(38). Itwas ing of automatically converging on resonance field values
originally devoted to compute NMR powder spectra and hasing a recursive routine based on Newton dichotomy. For
not yet been used for modeling EPR powder spectra. In tlgiezen {60, ¢} orientation, this routine, referred to as SEARCH,
model, the summation is performed over the faces of a regutammputes resonance fielHs,, (Figs. 1a, 1b) and intensitiég,
octahedron placed so that its six vertices lie along the coordf every nm transition, without making any excess diagonal-
nate axes, at unit distances from the origin. Each face of tization.
octahedron is partitioned to form a grid N{N + 1)/2 small The SEARCH routine can be described as follows. Mini-
equilateral triangles having the same area, wiere referred mum and maximum values of the magnetic fied,(, and
to as the partition number. Thus, any vertex of any of thesg, ., respectively) are taken as starting boundary values for tf
small triangles, corresponding to a particuld; {} orienta- search intervallf,, Hg]. The ZHEEV routine 40), designed
tion, can be easily indexed by two integeisand j. The for diagonalizing Hermitian matrix (double precision com-
direction cosines describing the magnetic field vector from tipex), is called for computing eigenvaluds,(H,), E.(Hg),
origin to the grid intersection are directly obtained from thandE.(H:), whereH. = 3(H, + Hg) andn = [1, 2, ...,
indicesi andj, without recourse to time-consuming trigono{2S + 1)(2I + 1)]. The occurrence of transition(s) in the ,
metric function evaluation. The solid angle weighting factdfl¢] and in the H¢, Hg] intervals is checked by testing if the
for any small triangle is approximated byR® whereR is the hv value lies within the rangeAE,.(H,), AE..(Hc)] and
distance from the origin to the small triangle. The small err¢AE,(Hc), AE..(Hg)], respectively, whereAE, (H) =
relative to this approximation becomes negligible when th&,(H) — E,,(H)|. This condition is satisfied forH,, H(] if
partition numbeN is increased, and it was shown i88f that the sign of the producP,. = [hv — AE,.(Ha)][hv —
this method vyields the exact spectrum shape, generally willk,(Hc)] is negative, and forH, Hg] if the sign of the
N = 125, depending on the anisotropy of the angular depeproductP.; = [hv — AE,(Hc)][hv — AE,.(H3g)] is neg-
dencies. ative. If this condition is satisfied for one or botH [, H.] and
[H¢, Hg] intervals, the SEARCH routine calls itself with[,,
3.2. Computing Resonance Fields and Transition Intensitie§lc] and/or He, Hgl intervals as new Hl,, Hg] search
interval. This recursive search is performed uhtjl andHg
The algorithm of Aldermaret al. (38) was written for values both converge on the same resonance field value. T
modeling NMR powder spectra, where the resonance frSEARCH routine returns when thelg; — H,| value becomes
guencies and the intensities of the transitions depend omdwer than 1/10 of the experimental field step size used fc
on the orientation of the magnetic field, since its strength iseasuring and computing the spectrum. Such accuracy
constant. Finding the NMR frequencies, for a given oriemesonance-field values is necessary for constraining interp
tation, then only requires solving one eigenproblem of diated resonance-field values.
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In case of crossing andm levels, the searching method3.3. Computing Lineshapes

outlined above may fail because a transition may occur onOnce features originating from the powder problem ar
each side of the crossing point (see Section 3.5). Hence 9 g P b

despite two transitions occurring within the sanke,[ Hc] accurately ”.‘Ode'ed’ physical or|g|n.of th? EPR Imeshgpes h
. o : : 0 be taken into account. The classical single-orientation EP
or [H¢, Hg] interval, the condition on the negative sign o

the productsP,. or Py, respectively, is not satisfied. An ineshape can be affected by many parameters, including e
additional condition has then to be added. The simplest w

gerimental ones and intrinsic ones. The intrinsic width anc
to circumvent this difficulty is to keep on searching transts '2P€ of EPR transitions are actually constrained by bol
tions until the|H; — H,| value becomes lower than a limit

Idynamic and static causes that lead to homogeneous and n«
value H,,i, whatever the signs of the,. and P, are. In homogene_ous broadening, _respectlvely. Dynamic process
. R gccurring in the EPR experiment can be approached by tf
practice, this limit value has to be small enough that eve : . L :
L . . loch model Q). In this model, the line profile is the classical
transition is found, and as large as possible in order
reduce computing time. Actually, the choice of this limi

Irst derivative normalized Lorentzian curve, whose linewidth
value depends on the complexity of the energy level di%_epends on both the spin-lattice and spin-spin relaxatic
gram. If the ZFS terms are small with respect to Zeemalllnnes’Tl and, r-espect|ve|y. ..

§ ... On the other side, unresolved superposition of spectral cor
terms, energy levels do not cross each other and the limit . L
value is taken as infinite. On the other hand, if the ZFS terrﬁ(s)nents can yield nonhomogeneous broadening:
are of the same order of magnitude as the Zeeman term(i) Unresolved superhyperfine coupling with neighboring
energy levels often cross each other, and the limit value magtd nuclear spins (e.g'H, Al, *P, *Si. . .), which can be
be as low as 0.05 T ap-band. approximated by a Gaussian broadening of the lineshipe (
These remarks show that, for a given orientation, a tran-(ii) Long-range spin—spin interaction, equivalent to a mag
sition between givemn andn levels can occur at more thannetic field heterogeneity which may generate significant line
one resonance field value in the magnetic field domabroadening4, 42.
investigated, as already mentioned I8). Resonance fields (iii) Short-range (super-) exchange interaction (via the Ii-
have then to be labeled in all casesHg, (0, ¢), wherep gands), between electronic spin of nearest neighbors (e.
is the rank of the resonance field for tlmam transition. clusters), generally modeled by an exchange Hamiltonian a
H.m (6, ¢) functions, i.e., angular dependencies, can Isciated with two Zeeman terms. For instance, it is written a
plotted for all occurring transitions (Fig. 1c). This output iollows for two interacting spins:
of prime importance in order to index the experimental EPR
powder lines. BH-g-S +BH-g S, +S,-3-S, 3]
Once a resonance field,,, value has been determined
for a given {9, ¢} direction, the ZHEEV subroutine is called,\herej is the exchange tensor. This interaction, not introduce
for computing the eigenvectors of the spin Hamiltonian & the present version of our code, yields specific resonan
Hom, In order to calculate transition intensity. lines, especially observed for ion pairs in minera8,(44.
Transition intensities between and m energy levels are ) gjight variations of the electronic environment from site
computed according to4d, 19, considering that the micro- , gjte 4t equivalent crystallographic position. Those may b
wave oscillating magnetic field, is perpendicular to the ,qeled by local deviations of the spin Hamiltonian parame
applied magnetic field, ters and yield complex anisotropic line broadening. Whel
these deviations are small, they can be approximated by
Gaussian distribution, the resulting line broadening being con
puted using first-order perturbation theoApby.

— sin®6 sin ¢ cos (S5, S, + S}..Sanl Broadening effects due to site-to-site distribution of Hamil-
tonian parameters may yield useful information on long-rang
disorder and structural relaxation phenomena. Therefore, in tl
code proposed, the opportunity to take into account sma
distribution of any parameter of a (8 3, | = %) spin Hamil-

lom= (1 — sin?0 cos’$)S%, S,

—cos6 sin 6 cosd[S5, .S, + Si..S.

Znm

+ (1 — sin’6 sin’) S, S,

~ cos0 sin 6 sin [ S, S, + S.S,.] tqnia}n H., i.e., g, B® andAii parameters, was irlclgded. The
distribution of each Hamiltonian parameter (eB;) is char-
+sin?9- St S, [2] acterized by a perturbation quantity (e @sg). Theses pertur-

bation quantities are simultaneously considered as a uniq
perturbation Hamiltonian referred to &ks. The full Ham-
with S, = (V.a|SV.), whereV,, andV, are the eigenvectors iltonian is then written as
corresponding to levels andn, respectively, an&, is a spin
operator,S,, S,, or S,. H=H,+ Hs, (4]
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where H, is the unperturbed Hamiltonian. As explained irclassical convolution processes for a single EPR line, th
Section 3.1, the SEARCH routine yield the resonance field andcessity to generate the partial absorbance spectrum of e
the transition intensity of every transition for a given orientaam, transition at eachf, ¢} orientation severely increases the
tion, using full diagonalization of thél, Hamiltonian. For a computing time when dealing with powder spectra. Therefore
given transition, involvingh andm levels, the variationdE, in order to save computing time, Eq. [6] was used. It yields a
and AE,, of energy levels due tbls are computed using the alternative way to transform linewidth quantities from the
first-order perturbation theory, assuming that the perturbatienergy domain to the field domain when the linewidth is smal

is small (e.g..059 < BY), enough in the field domain. Moreover, thg, (0, ¢) quantity
obtained from Eq. [6] reasonably estimates the linewidth o
AE, = (V,|H{V,) andAE,, = (V,|H{ V., [5] thenm, transition, when the Hamiltonian parameters devi

ate around their mean values, provided that these deviatiol

whereV, andV,, are the eigenvectors of, directly obtained are smail. _ o
from the last iteration of the SEARCH routine. The resultin% For example, Fig. 2 shows the effect of a small site distri
perturbation on the resonance field position of time, transi- bution on the EPR spectrum of Mnions substituted for Ca
tion, referred to ad's,, is then calculated assuming that théPns at the Ca(1) site within the apatite structudy<49.
energy levels are locally linear as a functiontef Comparison between the experimental spectrum (Fig. 2a) ai
the spectrum computed with a constant linewidth (Fig. 2c
Ts,.(0, §) = 2+ |AE, — AE0E,/aH — 9E,/aH| 2, [6] indicates that ressonance lines corrsespondmg to transitions b
tween(ms = *2, m,| and|ms = *3, m) levels, as well as

between(ms = =32, m| and |ms = =3, m,) levels, are
wheredE,/oH anddE,/oH are the local slopes of the ener ' - ' '
" n P Dhroadened. In contrast, the transition betwéeg = —31, m||

levels at the resonance fietl,,,,, those being readily obtained Y . .
from the two last iterations of the SEARCH routine. Thémd Ims = +3, m)) levels is not broadened. In first-order

I's,. (6, ¢) value obtained from Eq. [6] is readily Considere(§Jerturbat|0n approximation, it is expected that small variation

. L . . in the B> value do not affect transitions occurring between
as the strain contribution to the full-width-at-half-maximum . .
. . : energy levels with equahs absolute value4b). The existence
(FWHM), assuming that the broadening effect is symmetri-, . :
. . . . ... of such small fluctuations of the local environment of ¥n
cal when the Hamiltonian parameters deviate in a positive or

a negative sense (e.g o), this assumption being Con_|ons in the apatite structure is strongly supported by the agre

sistent with Eq. [5] where the perturbation of the energgcluding a Gaussian distribution of tH&$ value with oo —
2

levels are calculated at first order. i . ) e
Other broadening effects, e.g., unresolved superhyperf%‘c—g‘)015 cm (Fig. 2b). These site-to-site modifications may

. . C . € interpreted as a signature of the structural accommod
interactions and magnetic dipolar broadening, are modeled : : .

; e . tidn of the size mismatch between Kfnand C&" ions @7).
a unique constant and nonzero linewidth in the field do-

main. The total FWHM in the field domain, includifdg, and n th_e same way, a recent apph_catlon Qf our code showe
that it is very suitable for modeling strain effects on the
I's, was assumed to have the form

factors of radiation-induced defect centers in glas&€B. (

ent between the experimental spectrum and that computed

— 2 2 1/2

Lom (0, ¢) = [T'o + I's,, (6, $)17% 71 3.4. Building the Powder Spectrum
This expression, only correct in the pure Gaussian case, wa®nce resonance fields, transition intensities, and linewidtr
found to give reasonable results in other cases studied. are computed and stored separately for eamptransition and

Actually, Eq. [6] only holds when the energy levels aréor every vertex of the triangular grid, i.e., for every orientation
linear within the linewidth interval in the field domain. It mayof H with respect to the ZFS axis frame, powder absorbanc
not be true at low field whehyv = ZFS and/or whemv = A.  functions relative to eachm, transition are computed accord-
In these cases, even a symmetric broadening in the enenyy to the linear interpolation scheme of Aldermeinal. (38)
(frequency) domain rigorously generates an asymmetric brogBig. 1c).
ening in the field domain, as pointed out by Pilbretal. (46), It is important to note that the term “interpolation” is actu-
who give appropriate analytical expressions allowing thally not fully suitable for characterizing the algorithm of these
transformation to be computed. However, despite the fact tlatthors. This method drastically differs from a simple lineal
using these expressions requires no more computing time thaterpolation procedure consisting of generating a large nun

FIG. 2. Directleast-squares fitting of th@-band spectrumy(= 34.200 GHz) at 300 K of Mf{ ions at the Ca(1) site in natural apatite from Treguenec
(France). Upper part: angular dependencies; plain lindd; = O transitions; dotted linesAM, = =1 transitions, forbidden along the principal axes.
Lower part: (a) experimental spectrum; (b) computed spectrum with= 0.0015 cm® andl’, = 0.004 T; (c) computed spectrum withse = 0 cm™*
andI', = 0.004 T.
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ber of Dirac delta functions from the three sets of resonant&erefore, oncéd',,(H) is only a function ofH for eachnm,
fields and transition intensities exactly computed at the threansition, the absorbance function of eawh, transition can
vertices of the elementary triangle, as proposed, for instanbe, separately convoluted at the end of the calculation, tt
for the local linear interpolation procedure within the subpafull-width T, (H) of the profile shape function varying as a
tition of the SOPHE methodL@). In contrast, for each transi- function of H. A linear combination of normalized Gaussian
tion, the algorithm developed by Aldermanal. (38) generates and Lorentzian functions (pseudo-Voigt function) was chose
the absorbance function by “distributing” the average intensias the line-profile function, since the lineshape resulting fron
within the elementary triangle as a “tent” shape lying in théhe various broadening effects outlined above is generall
[H miny Hinad interval, whereH ;, andH ., are the minimum and neither pure Lorentzian nor Gaussian. In practice, the fire
maximum values of the angular dependency of the resonamezivative of absorbance for eactm, transition is readily
field within the elementary triangle, respectively. For a giveobtained by convoluting the corresponding absorbance fun
mn, transition and a given triangtp the area of this triangular tions, with a normalized first-derivative pseudo-Voigt function
“tent” is taken proportional to the arithmetic averdgg(q) of dpV(H) with FWHM I' = T, (H) and having the form

the transition intensity at the three vertices of the triangle, since

angular dependence of the transition intensity is generally dpV(H) = (1 — a)(—16H7 T 3)[1 + 4H2[ ~2] 2

small within the triangle. This method significantly smoothes

the absorbance func?ion and gives the ?’-}xact sp)éctrum shape + a(-16[In(2)]**Hr T )
(38) with much smaller partition number values than other X exp(—4 In(2) H?T ~?), [9
methods based on the summation of Dirac delta functions.

The partial absorbance functions, relative to eanfy tran-  where« is an adjustable parameter in the [0, 1] interval. Fo
sition, are separately stored in order to be separately congenvenience, the full-widtk',, (H) have been taken as similar
luted, because, as shown in Section 3.3, the linewidth may vagy the Lorentzian and Gaussian components. Finally, the cla
from one transition to another and as a function of the sjcal EPR spectrum is obtained by summing the first-derivativ

direction. spectra of allhm, transitions.
Because of thd's component, the total linewidth depends
both on then andm spin states involved in them, transition, 3.5. Remarks on Crossing Levels
and on the §, ¢} direction. However, local convolution of the
absorbance function relative to each transition, for each dir%ﬁ
tion or for each elementary triangle using the average of t
I|nevy|dth over the three verticed9), is extremely _t|_me—con— pointed out by Mombourquette and We@i7). Van Veen (8)
suming. In the present code, for eaclmn, transition, the

averagd’ ., (q) of the linewidth over the three vertices of eacr%ls.ed a sorting procedure based on the continuity of the de‘r‘|’
. e . ) . atives of the angular dependency, but he remarked that “
triangleq is computed in a first step. However, in order to save . X "
. . ) . . exact calculation of the resonance field and of the transitio
computing time, the anisotropic broadening effect over the ; . .
: ) : . . . Intensity had to be substituted to the interpolated values for tt

whole orientation sphere is then approximated by a linewid

uantity ... (H), being only a function of the magnetic fieldangular intervals where the correspondence between the tre
q Y4 (), g only 9 sitions cannot be established reliably.” More generally, it cal

strength, fpr agiven transition. The main issue for determmmk% inferred from the work of Katdb(l) that there is no suitable
I'..,(H) arises from the nonbijective character of some angular

. ) : ” method for sorting wavefunctions, such as the angular depe
dependencies. For instance, for a given, transition, when

L - : ency H(0, ¢) of every transition can be described as a
considering two distinct triangles referred to as 1 and . . : :

) . : ifferentiable function. Therefore, the simple ascending orde
the interval of interpolated resonance field valués,[,

Hurd and Hum Huned o COMresponding to the two triangles,sortmg is generally preferred, although it fails in some specic

respectively, often overlap, althoudh,,(1) # I',,(2) and cases which can be classified as two types:

[omp(1) # lam(2). This difficulty was circumvented (i) “Looping” transitions (L8, 49: There may exist §, ¢}

by computing, for eacmm, transition and for each interpo-directions where two levels andn’ behave in such a way that
latedH value, an average linewidth valll_bﬂmp(H), weighted 0 < |E, — E,| < hvin a particulaH interval andE, — E, |

by transition intensities: = hv outside of this interval. In that case, one transitior
appears at each extremity of the interval, and these two tra
sitions are indexed asn, andnnj., in our algorithm. How-

It is important to remember that interpolation methods imply

e_e need to “keep track of the transitions so that the prope
values are used to interpolate each transition calculated,”

1 qu L (q)] = qi lmy(Q1) [8] ever, this situation does not correspond to a true crossing wh
o (H) Q)| = Com(a)| the condition|E, — E,.| > 0 is verified. Moreover, sincgE,
nm g=1 H gq=1 " H

— E,| vary as a function of §, ¢}, angular dependencies of
nn, andnny,, transitions can coalesce at a particulér ¢}
where .. is the number of triangles which give the samerientation, i.e., coalescence point, such as (E, — E, | =
interpolated resonance field for the samenm, transition. hv. Finally, thenn’ transition may disappear whei, — E, |
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TABLE 1
Nonzero ZFS Parameters and Integration Domain Required for Computing the EPR Powder Spectrum
of S = 2 and S = $ Centers, as a Function of Site Symmetry®

Symmetry Nonzero ZFS parameters Integration domain
Cubic a/120 = BY + 5B; " X, Y, Z
a/120 = B + 20V2 B} ° X, Y, Z
Hexagonal BY, BS X, Y, Z
Quadratic B, BY, B} X, Y, Z
Trigonal BY, BS, B3 X, Y, Z, =X, Y, Z
Orthorhombic B), BZ, BS, BZ, B} X, Y, Z
Monoclinic B, BZ, B, B3, B,?, B:, B,* X, Y, Z, =X, =Y, Z
Triclinic BY, B, BS, B., B,', BZ B,? Bi, B.,® B, B,* XY, Z, =X, Y, Z, =X, =Y, Z; X, =Y, Z

*X, Y andZ refer to the principal axes of the second-order ZFS tensor and are taken as the reference coordinate figuared Altensors are considered
to be diagonal in this coordinate frame.

®Z along a fourfold axis.

¢Z along a threefold axis.

> hv. Such annn’ transition is called a “looping” transition 6, when levels 3 and 4 cross each other on the axis. Howeve
because its angular dependency forms a loop. Looping trarisan be inferred from the work of Von Neumann and Wignei
tions occur wherhv = ZFS (see, for instance, 24, 34, ;, (53) that such true crossing can only occur at isolated points ¢
and 45 , transitions in theX-band spectrum o&Al ,O;:Fe’", the (@, ¢) space, generally corresponding to high symmetn
Fig. 3), rather than whehv > ZFS (Q-band spectrum of directions. Consequently, when using the interpolation algc
aAl,0,:F€e*, Fig. 4). In our algorithm, sincen, andnn;,, rithm of Aldermanet al, the contribution of a discrete “true
transitions are indexed separately, they are not interpolated @anessing” point to the powder spectrum is small because it onl
with each other at the coalescence point and two undesirabféects a single elementary triangle among NN + 1)/2
steps appear in the absorbance functions of both transitiomg&angles, where typically 15= N = 125.
However, when computing broadening effects as strain effects,
using Eq. [6] or more appropriate expressions fratf),(the
field domain linewidths ofin;, andnny,, transitions become
very large when their angular dependencies coalesce, becajl§e General Method
the slopes of tha andn’ energy levels vanish at this point, as
was experimentally observed2). Therefore, the computed The spin Hamiltonian parametergf, B, A;) define the
EPR spectrum is smooth, even if the two branches of the lomgsonance fields and intensities of each transition for evéry {
have not been interpolated through the coalescence point (s8edirection of the magnetic fieldH. Since powder spectra
for instance, transitions 24, 34, ;, and 45, in Fig. 3 and average all possible orientations of the applied magnetic fiel
transitions 23 ,, 34, 5, and 45 , in Fig. 5). direction, relative to the ZFS axis frame, powder lines only
(ii) “True crossing”: There may exist particulad,(¢) di- occur when one of the first derivatives of the angular deper
rections where a resonance fiéid,, involves two degenerate dence function, as a function éfor ¢ respectively, vanishes
levels n and n’ such as|E, — E,| = 0. In such points, for a given transition. Each line of a powder spectrum is the
referred to as “true crossing” points, the angular dependencyrefated to a particulard, ¢} direction of the magnetic field
all transitions involving then or n’ level cannot be simulta- vector H where anm, transition has a stationary angular
neously differentiable, whatever procedure has been chosendependency (“turning point”) (Figs. 1, 2, and 3). As a conse
sorting eigenvalues. Indeed, for a givefh {p} orientation and quence, any line of a powder spectrum, at g, field
using an appropriate sorting order for the energy levels, ejgesition, is indexed byim, and a §, ¢} direction. S and |
envalues of the Hamiltonian can be described by analyticalues and site symmetry of the paramagnetic center constre
functions ofH because the spin Hamiltonian is linear th the number of Hamiltonian parameters required for describin
(51). However, the appropriate sorting order may differ for athe EPR spectrum, as well as the domain of integration re
adjacent §, ¢} orientation if at least two levels cross eachuired for computing the EPR powder spectrum (Table 1). Al
other. Consequently, using such sorting procedures yields diserview of the definition and use of the spin Hamiltonian in
continuities in the angular dependencies at “true crossin@w symmetry systems is given in4). In cases wherg and
points. Besides, when energy levels are sorted in ascendigensors are not diagonal in the same coordinate fram
order, a “true crossing” generates an undesirable “repulsivedmplex situations may occur (see, e3f), but these will not
feature on the angular dependencies of transitions involving the discussed here.
crossing levels, as observed for transitions 24d 23 in Fig. Determination of the Hamiltonian parameters from the ex

4. REFINEMENT OF EPR PARAMETERS
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TABLE 2 TABLE 3
EPR Parameters (cm™) of Mn** Center ZFS Parameters (cm™) of Fe®* Center
at Ca(1) Site in Fluoroapatite at AI** Site in Corundum at 300 K
B? A, A, Temp. B? 60B) 60B: Reference
g (cm™) (cm™) (cm™) (K) References
0.0561 —0.0110 0.2181 This study

2.0002 0.0138 0.0087 0.0087 300 This study0.0559 -0.0110 0.2198 57
2.0005 0.0133 0.0086 0.0088 300 a7
1.9919 0.0133 0.0086 0.0089 300 48 Note. gvalue is taken isotropic at 2.0000.
2.0000 0.0157 0.0086 0.0086 77 49

spectra and angular dependencies computed with various Ha

perimental spectrum can be conducted by the two followirijonian parameters.
steps: For instance, rough estimation of the second-order ZF

. . — . parameters can generally be obtained by adjustitgnd line

First, the spin Hamiltonian parameters can be adjusted Jfqjiions The refined parameters can then be used to comp
order to minimize the sum of the squares of the differencgs, corresponding- and Q-band powder spectra. Indexing
t_)etween.observed and calculated positions of selected powﬂe‘?ﬁaining experimental lines is then possible even when cor
lines, using a separ_ate module referred to as EPRP_LP' lex angular dependencies are observed, using angular dep
Second, the Hamiltonian parameters, .the Ime-profllg paraﬁ?ncies computed in the symmetry planes. Better accuracy
eters, and the scale factors can be adjusted by a direct fylis yefinition of the Hamiltonian parameters can be achieve

spectrum fitting .procedure, ie., m|n|m|zmg_the sum of thS including these line positions and associated “turning
squares of the difference between the experimental and Calﬁﬁints" in the refinement procedure. Accurate second- ar

lated EPR intensities, over every point of the spectrum. THIS \th_order ZES parameters can be extracted from powd
second option i? perfqrmed by the main code ZFSFIT, Whi%ta, using this feedback approach, i.e., indexing—refine
uses the same input file as EPRPLP. ment—spectra computation, as demonstrated by the examp
In both codes, the same least-squares minimizing routirgéyen below.
LMDER1 (55), based on the Levenberg—Marquardt algorithm,
is used. 4.2. No ZFS Term
Full-spectrum fitting, however, requires the set of initial For S= 1, no ZFS parameters are defined. As a consequenc
parameters to be close to the solution. An initial refinemeq e axis frr:me where thgtensor is diagonal, i.e., the principal
using selected line positions, is then generally required, and s frame of theg-tensor, is preferably tf;lken, as reference
crucial step of this analysis consists in indexing powder Iineg '

This task b " v difficult when deali it oordinate frame. In that case, the indexing procedure is sin
IS task may become extremely diicult when dealing wi le, since the §, ¢} directions of the powder lines always

tvyo or more paramagnetlc centgrs with higlalues and low coincide with the reference coordinate axes. Therefore, tt
site symmetries. Indeed, for a given S (and I) center, the low

- l
the site symmetry is, the higher the number_ of powder lines ag mlﬁ,tj etgrla?[?ozfstgﬁ es;ge::teruryh;agbze) ;Zig'gﬁﬂ éoogtn ai;%z:]h
the more complex the angular dependencies are. Moreoverdé ined in Section 3.1
is important to remark that, in the general case, e.g., triclinic o
symmetry, the “turning point” directions of a transition in the
symmetry planes (e.gZOX, XOY, YOZ...) generally de- 4.3. Second-Order ZFS Terms
pend on the spin Hamiltonian parameters and do not correFor S> 3 and whatever the site symmetry, there exists a s¢
spond to the principal axes of the EPR center. As a cons#-orthonormal axesX, Y, andZ, such that;, B, andB,?
quence, possible changes in the “turning point” directions haterms vanish and such thi&j3| = |BZ|. This axis frame, called
to be taken into account when fitting line positions. The initidhe principal axis frame of the second-order ZFS tensor, i
“turning point” directions can be determined by comparing thehosen as the reference coordinate system for all computatio
experimental spectrum with a computed spectrum and timethe following text, although the code proposed incluBgs
corresponding angular dependencies computed in the symmg?, andB, * terms, if needed. When'S 4, several cases have
try planes. Changes in “turning point” directions can be ag be distinguished, depending on the possible use of tt
sessed by comparing experimental powder data with a setfadirth-order ZFS tensor.

FIG. 3. Experimental and calculatéttband powder spectra at 300 K of Féons at Al sites in an iron-doped polycrystalline corundum (0.025 wty©Re
Upper part: angular dependencies where transitions are labeigdower part: (a) experimental spectrum; (b) computed spectrum sjth= 0.0007 cm*
andl’, = 0.0015 T; (c) computed spectrum with;z = 0 cm *andl’, = 0.0015 T.
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TABLE 4 nonzero. When fourth-order ZFS terms are sufficiently small t
Experimental and Calculated Line Positions (Tesla) for Fe** be neglected, as for Mh (S = 3, | = 3) at the Ca(1) site in
Center at AI** Site in a Synthetic Corundum at 300 K apatite with site symmetry-3 (Table 2, Fig. 2), the §, ¢}

directions of the powder lines generally coincide with the
reference coordinate axes, i.e., the principal axes of the secor
order ZFS tensor, and the exact computation of the spectru
nm, [6, ¢] Exp. Calc. Exp. Calc. can be restricted to theX( Y, Z) face of the octahedron. On the

contrary, when fourth-order ZFS terms significantly contribute

X-band Q-band
Transition (v = 9.7768 GHz) (v = 34.0603 GHz)

12, X 0.1379 0.1384 08713 0871245 the fine structure, complex angular dependencies may |
12, Y 0.8713 08712 d and the d in of int i h © be e
13, 7 0.0707 0.0717 observed and the domain of integration may have to be e:
14, X 0.2595 0.2594 tended, especially for trigonal, monoclinic, and triclinic point
23, X 0.0839 0.0840 1.0329 1.0320 symmetries.
23, X 0.1120 0.1120
23, (6,0) 0.7801 0.7782 _
23, (30, 0) 0.0339 0.0339 4.4. Fourth-Order ZFS Terms
24 ©.0) 0.3226 0.3240 Table 1 recalls the ZFS parameters and domain of integr:
25, (30, 180) 0.4477 0.4494 . ; . 7
34, X 03436 0.3437 11813 1 1806 tion required for computing the powder spectrum as a functio
34, 7z 1.2164 12161 Of site symmetry. This table is constructed in agreement wit
34, (35, 0) 1.3235 1.3227 the conventions used in the code, i.e., the principal axes of t
34, 535, 1§30) 1.2965 1.2962 second-order ZFS tensor are chosen as the reference coordir
34, 20,0 0.2469 0.2482

' system.
34, (29, 0) 0.5928 0.5920 yl f cubic. h | and dratic sit i
34, (27, 180) 0.5494 0.5500 n case of cubic, hexagonal, and quadratic site symmetrie
45, X 1.3289 1.3280 the computation of the spectrum can be restricted toXher(
36, X 0.5029 0.5038 Z) face of the octahedron, because the fourth-order ZFS tens
45, (Z ) 0.7978 0.7989 can be expressed in its principal axes, which coincide wit
45, 66,0 0.5859 0.5862 th

ose of the second-order ZFS tensor.

45, (63, 180) 0.5146 0.5150 . ) )
45, (70, 0) 1.3961 13935 4.4.1. Trigonal site symmetry: Eein aAl,O; (corundum).
56, X 0.7389 0.7356 For trigonal site symmetry, onlg3, Bf andB; parameters
56, z 0.5413 0.5430 are nonzero. Th& axis lies along the unique crystallo-

graphic threefold axis and théaxis is chosen such that, *
vanishes. In that case, the exact computation of the spectru

ForS= 1 or S = 3, the second-order ZFS tensor only i€an no longer be restricted to th&,(Y, Z) face of the
defined. The§, ¢] directions of the powder lines, i.e., turningoctahedron, and integration also has to be done over tt
points, generally coincide with the reference coordinate ax¢s; X, Y, Z) face. Although angular dependencies are simila
i.e., principal axes of the second-order ZFS tensor, as for Cin the YOZ and —YOZ planes, angular dependencies of
(S = ) ions (Fig. 1). Since the fourth-order ZFS tensor iseveral transitions may differ between tA®X andZO —
expressed in its principal axes, the exact computation of teplanes, due to the trigonal symmetry of t@¢ operator.
spectrum can be restricted to thk, (Y, Z) face of the octa- An interesting example of this effect is given by the EPR
hedron. Besides, when the ZFS terms have the same ordesméctra of F& substituted at the Al octahedron with site
magnitude as the Zeeman term (e%f), [6, ¢] directions of symmetry3 in the corundum structuregAl,0; (Tables 3
some powder lines may not coincide with any principal axiand 4): at X band (Fig. 3), the 3429, 0} and 34, {27, 180}
That is clearly shown in Fig. 1, where the sharp #2nsition lines are separated by 0.0434 T, and the @&, 0} and 45,
is stationary around the {90, 41} orientation. This remark she¢§3, 180} lines are separated by 0.0713 T;Q@tband (Fig.
light on the necessity to take into account the possible chanfjethe 34 {35, 0} and 34, {35, 180} lines are separated by
in orientation of the “turning points” of the transitions wher®.0270 T. In the case of Bein corundum, the adjustment of
adjusting ZFS parameters for fitting line positions. When dihese line positions at bot@-band andX-band frequencies
rectly fitting the full spectrum, this problem is obviously lesallows accurate determination of tBd fourth-order param-
crucial because powder lines are obtained from numeriggdkr, in agreement with single-crystal EPR da&d) (Table
integration. 3). In addition, direct fitting of theX-band powder spectrum

For S> 3, second- and fourth-order ZFS tensors may both Eigs. 3a, 3b) indicated that the underestimation of th

FIG. 4. Experimental and calculateg-band powder spectra at 300 K of ¥dons at AF* sites in an iron-doped polycrystalline corundum (0.025 wt%
Fe,0s). Upper part: angular dependencies where transitions are labeigdower part: (a) experimental spectrum; (b) computed spectrumayth= 0.0007
cm*andl, = 0.002 T; (c) computed spectrum withz = 0 cm * andT, = 0.002 T.
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TABLE 5
EPR Parameters (cm™) of Fe** Center at AI** Site in Diaspore
B? B3 60BY 60B? 60B; Temp. (K) Reference
0.1505 0.0982 0.0120 —0.0095 —0.0588 120 This study
0.1473 0.0967 0.0126 -0.0160 -0.0514 300 %9)°

Note. gvalue is taken isotropic at 2.0000.

2 Absolute sign ofB3 was not determined.

® Original ZFS parameters reported B9} have been transformed into the same coordinate frame as in the present stuglyie along the uniqub-axis
(Pbnmspace group) using the rotation matrices given3).(

relative intensity of the 23Z with respect to 34 Z and incidence, in theXOY plane only, of the second- and
34,XY lines (Fig. 3c) could only be corrected by includingourth-order principal axis frames. As a consequence, th
a small fluctuation around the axial symmetry8), i.e., integration domain has to be extended to theX( -V, Z)
including oz = 0.0007 cm* (Fig. 3b). This result suggestsface of the octahedron.

that structural accommodation of ¥efor Al®* substitution ~ An interesting example of monoclinic site symmetry is
decreases the site symmetry of the host site. The undergis:en by the EPR spectra of Fesubstituted at the Al site
timated intensities of the 23Y and 23 XY lines are still not with site symmetrym, in the diaspore structure;AIOOH.
explained, but may be attributed to a failure of Eq. [1] an@ihe FE" center in diaspore was first studied &9}, where
[2] for accurately calculating intensities of weakly allowe@FS parameters obtained from single-crystal EPR data a
transitions in some cases. However, fitting of théband reported (Table 5). As explained i89), a particularity of
spectrum recorded at 120 K (data not shown), whergX¥3 the diaspore structure is that, although there is a uniqu
and 23XY lines disappear becaus slightly increases, crystallographic Al site, the (010) mirror (in Pbnm SG) yield
yields a better agreement than that in Fig. 3 and fullywo sets of magnetically nonequivalent *Fesites. As a
supports the existence of a nonzerg: term. consequence, EPR single-crystal spectra of diaspore exhil

4.4.2. Orthorhombic and monoclinic site symmetry®Fe two F€" centers in equal proportions, with the same site
in «AIOOH (diaspore). In the case of orthorhombic sitesymmetry, but with distinct orientations with respect to the
symmetry, onlyBJ, B, BS, BZ and B; parameters are crystallographic coordinate frame. This difficulty is not
nonzero. TheZ axis, lying along the crystallographic two-encountered when analyzing EPR powder data, where tf
fold axis where/BJ| is maximum, corresponds to a twofoldtwo distinct orientations of the Fécenters contribute to the
axis of the second- and fourth-order ZFS tensors. Xlais Same powder spectrum. In the present study, ZFS param
is chosen such thaB,? B, and B,* simultaneously ters of the F& center in diaspore were refined by adjusting
vanish and the computation of the spectrum can be restric&ithultaneously 19 line positions froX- and Q-band pow-
to the (X, Y, Z) face of the octahedron. For all the poinder data (Table 5). The good agreement between experime
symmetries listed above, principal axis frames of the se@ and calculated line positions (Table 6), as well as be
ond- and fourth-order ZFS tensors coincide or are related byeen experimental and computed powder spectilaand
axis permutations. For lower point symmetries, this is n@ig. 5) andQ-band (Fig. 6), validates the accuracy of the
longer the case. refined ZFS parameters of the present study, even at four

In the case of monoclinic site symmetry, oy, B5, B, order. AtQ-band, underestimation of the intensities of the
BZ B,? Bi, andB,* parameters are nonzero. TBeaxis 23, and 23 lines near thezZ-direction may be related to
lies along the unique crystallographic twofold axis, butfio preferential orientation along thb-axis/Z-axis direction.
axis can be found such th&,?, B,2, andB,* simulta- The correctness of the refined ZFS parameters is also su
neously vanish. According to the convention used in th#orted by the consistency between the present study and t
present code, th¥ axis is chosen such th&t * vanishes. It single-crystal study §9) (Table 6) and previous-band
is then a twofold axis of the second-order ZFS tensor, bpowder spectrum simulationd §). Therefore, the present
does not correspond to any symmetry axis of the fourtstudy confirms that the noncoincidence between the secon
order ZFS tensor. As a consequence, eitBgf or B,;* or and fourth-order principal axes remain small, as alread
both are nonzero. This situation corresponds to the nonsuggested59). This “pseudo”-coincidence explains why a

FIG. 5. Experimental and calculated-band powder spectra at 120 K of ¥eions at Al site in natural diaspore from Turkey. Upper part: angular
dependencies where transitions are labeley; lower part: (a) experimental spectrum; (b) computed spectrum aggh= 0.0025 cm®andl’y = 0.005 T;
(c) computed spectrum withrgs = 0 cm* andT’, = 0.005 T. Note that “looping” transitions, 23, 34,_s;, and 45_,, do not give rise to any “glitch”
at the coalescence point in the spectrum computed with strain effect (see Section 3.5).
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TABLE 6 that of iron in kaolinite (SjAl ,05(OH),) was noticed. Re-
Experimental and Calculated Line Positions (Tesla) for the Fe**  cently, evidence of Fé substitution at both triclinic Al sites
Center in a Natural Polycrystalline Diaspore (Turkey) at 120 K i the dioctahedral layer of kaolinite has been demonstrate
(20). Second-order Stevens constants and a compXMted

X-band Q-band
Transition (v = 9.4240 GHz) (v = 340095 GHz) band powder spectrum were reported. As showi
in Fig. 7, the X-band powder spectrum of an iron-doped
nm, [0, ¢] Exp. Calc. Exp. Calc. polycrystalline gibbsite sample is well modeled by con-
12, X 0.3791 0.3791 11500 1 1487 sidering the existence of two Fecenters, _referred to hert_a—
12, v 00731 0.0724 02703 02637 after as A and B (Table 7). Those two sites are unambigt
13, z 0.0929 0.0052 ously distinguished a@Q-band, where more than 40 sharp
23, Y 0.0298 0.0269 lines are observed (Fig. 8). The complexity of @eband
5311 ; 01625 01614 0-(??310 Ogiggo spectrum of the Fé centers in gibbsite sheds light on the
34, v 0.2012 0.2018 1.3129 1.3104 necessity of fully comput_mg _EPR powd(_er spectra a_nd re
34, v 0.5000 0.5004 lated angular dependencies in order to index experiment
34, Y 0.8547 0.8526 powder lines. Second- and fourth-order ZFS parameters f
34, z 0.1400 0.1394 1.4439 1.4417 poth A- and B-centers (Table 7) were refined by simulta
34 (60, 180) 0.7130 0.7176 neously adjustingi-band andQ-band line positions (Table
35, z 0.4212 0.4211 : . .
35, 7 0.5570 05538 9)- The large numbers @-band lines taken into account in
56, v 0.8416 0.8423 the refinement, 23 and 9 for A- and B-centers respectively

allowed very good relative accuracy in second-order ZF:
parameter values=2%. and =5%. for A- and B-centers

reasonable agreement is found when negledpfandB, * respectively, fourth-order ZFS parameter values being, hov

parameters, i.e., when assuming an orthorhombic site sy er, less accurate (Table 7). Triclinic site symmetry s

metry instead of the true monoclinic site symmetry of thgbserved_ for the A-center, as indicated _by the splitting o
host site. several lines a-band (Table 8). Especially, angular de-

4.4.3. Triclinic site symmetry: P& in aAl(OH), (gibbsite). pendencies of the 3545, and 34 transitions differ be-_
Rt 0 b2 po o1 o-1  tween theZOX andZO—X planes and thus well constrain
In the case of triclinic site symmetr@,, B3, B, B;, B, -, 3 )

2 b2 P32 o3 P4 A éhe B value. In the same way, angular dependencies of bot
B:, B,%, B, B,°, By, andB," parameters are nonzero an e 2 d 34 li differ bet theXOY and XO— Y
no crystallographic symmetry axis exists. TEeaxis is €25 and th4 Ines tl (.ertei\éveer(;B% | an Event
taken along the twofold axis of the second-order ZFS tens<9|lanes an us constrain tii~ andB," values. ventu-
where|B3| is maximum. TheX axis is chosen such th&, ally, the complex angular dependency olf th%fme N tle
vanishes. These axes do not correspond to any symmGQr){: 2 region ?‘tQ'F’a”‘?' con.strams the,, B,", andB,
axis of the fourth-order ZFS tensor and all fourth-ordef@!ues. The triclinic distortion of thf A-center strongly
terms are nonzero. This situation corresponds to a fdPPOIts that this center is related to"Féons substituted
noncoincidence of the second- and fourth-order principi” Al ions at Al(1) and/or Al(2) structural sites. For the
axis frames. In that case, the integration domain has to Becenter, line broadening, mainly due to site-to-site fluctu
extended to the whole half-sphere. ation of the ligand field ¢z = 0.003 cm™), hinders the

An example of such a complex situation is given by th@bservation of any small splitting of angular dependencie
EPR spectra of Fé substituted for Al" in the gibbsite Of 34, or 45, transitions between th&OX and ZO—X
structure,«Al(OH).. The gibbsite structure is characterize@lanes. As a consequence, the B-center was described
by dioctahedral layers containing two distorted octahedréionoclinic site symmetry, thB_ZZ and B,* values being
Al sites, Al, and Al,, both with triclinic site symmetryl Wwell constrained by the splitting between theOY and
(60). Both Al octahedra are defined by six hydroxyl group O—Y angular dependencies of the,3#he atQ-band. The
with similar average Al-O distances, 1.9621.005) A and B-center likely corresponds to a structural site, with regar
1.905¢0.005) A, for Al(1) and Al(2) respectively, andto the significant temperature dependence of its ZFS parar
have similar long-range environments. Afrband EPR eters 62), although its local symmetry has not been accu
powder spectrum of the Fé center in gibbsite was first rately determined. The lack of information about the relative
reported in 61), where the similarity of this spectrum toorientation of the ZFS and the crystallographic coordinat

FIG. 6. Experimental and calculate@-band powder spectra at 120 K of *Feons at Al site in natural diaspore from Turkey. Upper part: angular
dependencies where transitions are labeley; lower part: (a) experimental spectrum; (b) computed spectrum ayggh= 0.0025 cm®andl’, = 0.006 T;
(c) computed spectrum withrgs = 0 cm* andI, = 0.006 T. Note that “looping” transitions, 13, 24, ,, and 35_,, as well as the “true crossing”
transitions, 24 — 23,, do not give rise to any “glitch” in the spectrum computed with strain effect (see Section 3.5).
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FIG. 7. Experimental and calculated-band powder spectra at 300 K of ¥dons in synthetic gibbsite (0.025 wt% Fe). (a) Experimental spectrum; (b

computed spectrum with 65% A-center and 35% B-center; a spline baseline, accounting for super-paramagnetic iron-oxide signals, has beenragdéz (c)
spectrum of A-center; (d) computed spectrum of B-center.

frames, respectively, hinders a crystallographic assignmesmptin Hamiltonian is used. The development of an efficien
of A- and B-centers in relation to Al(1) and Al(2) octahedralgorithm for determining resonance fields, as well as th
in the gibbsite structure. use of a fast algorithm for integrating angular depender
Direct full-spectrum fitting was performed in order to detercies over the orientation sphere, allows computation ©
mine the relative amounts of A- and B-centers in the gibbsiégnooth EPR powder spectra on wide field ranges withi
studied. Best fits at both frequencies were obtained by inclughort CPU times. For instance, using an IBM RISK6000 43}
ing 65 = 5% and 35+ 5% of A- and B-centers, respectivelycomputer, the computation of th@-band powder spectrum
(Figs. 7, 8). Such an uneven site distribution may be relatedjpine cf* center 0 = 4) in a-Al,,0O, (Fig. 1e) required 4 s
easier relaxation processes for the A-center than for the Bp\y time with 50 steps in th&OX plane, 3182 field
center, as suggested by the significantly lovr and U8, steps of 0.0005 T, and M, value of 1.0 T. In the same
values for the A-center (0.0869 cmand 0.0009 cM', .y the computation of the-band powder spectrum of the
resplectlvely) _than for the B-center (0.1400 ¢nand 0.003 A-Fe* -center fi = 6) in gibbsite (Fig. 8c) required 302 s
cm*, respectively). CPU, with 5100 elementary triangles (integration on the
half-sphere), 1791 field steps of 0.001 T, andHag; value
of 0.05 T. The present examples demonstrate that accure
The present code is a powerful tool for interpreting EPRecond- and fourth-order ZFS parameters as well as hype
powder spectra. It is especially useful when dealing witfine parameters can be refined from EPR powder dat:
spin Hamiltonians where the Zeeman, the fine structurgrovided thatX-band andQ-band data are fitted simulta-
and/or the hyperfine structure terms have the same ordeously. In addition, relative amounts of distinct centers ca
of magnitude, because direct diagonalization of the fuble easily determined. For instance, quantitative analysis ¢

5. CONCLUSION

TABLE 7
EPR Parameters (cm™) of A and B Fe®* Centers at AI** Sites in a Synthetic Gibbsite at 300 K
B3 B} 60BY 60B; 60B,* 60B; 60B,? 60B3 60B,° 60B; 60B,*
A-center 0.0869 0.0480 -0.0027  —0.003 -0.014 0.033  —0.048 —0.045 —0.050 -0.014  —0.033
B-center 0.1400 0.0695 0.0141 0 0 0.008 -0.011 0 0 0.129 —0.065

Note. gvalue is taken isotropic at 2.0000; uncertainties are on the last digit.
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TABLE 8
Experimental and Calculated Line Positions (Tesla) for the A- and B-Fe** Centers in Gibbsite®

X-band Q-band
Transition (v = 9.4200 GHz) (v = 34.0040 GHz)

nm, [6, ¢] Exp. Calc. Exp. Calc.
A-center
34, 4 0.1288 0.1289
23, {60, —90} 0.15 0.1489
23, {60, 90} 0.15 0.1505
34, {90, 17} 0.2062 0.2059
12, {90, 2} 0.2707 0.2700
46, z 0.1378 0.1379
14, {75, 90} 0.1654 0.1640
14, {90, 0} 0.2165 0.2160
12, {90, 96} 0.4640 0.4651
25, {41, 90} 0.4986 0.4989
25, {41, —90} 0.5029 0.5029
35, {14, 0} 0.5785 0.5791
35, {14, 180} 0.5832 0.5856
35, {45, 0} 0.6005 0.6013
35, {45, 180} 0.6108 0.6110
45, 4 0.6624 0.6632
23, {90, 79} 0.7909 0.7906
23, {90, 5} 1.0288 1.0291
34, {90, 11} 1.0480 1.0498
34, {90, 178} 1.1444 1.1447
34, {90, 86} 1.1563 1.1570
34, {90, 63} 1.1650 1.1644
34, {90, —53} 1.1760 1.1758
45, {67, 0} 1.2436 1.2427
45, {67, 180} 1.2585 1.2487
34, {30, 0} 1.3200 1.3210
34, {30, 180} 1.3295 1.3293
B-center
34, z 0.1305 0.1305
34, {90, 10} 0.1928 0.1926
14, Y 0.0562 0.0547
13, Y 0.1069 0.1086
12, Y 0.3061 0.3077
35, 4 0.3970 0.3969
23, {90, 87} 0.6795 0.6790
23, X 0.7875 0.7884
34, {90, 9} 0.8475 0.8472
34, {90, —41} 0.8710 0.8712
34, {90, 33} 0.8950 0.8947

* Note that few powder lines lie along the principal axes.

complex multiple-center spectra, including more than fiygarameters are generally no longer Gaussian, but are asy
distinct radiation-induced defect centers£S;; | = ), was metric or exhibit multiple modes. Modeling EPR spectra of
recently performed on a set of borosilicate glass&8).( paramagnetic centers in such disordered materials requir
Finally, the first-order perturbation approach for computinguultiple-spectra computatior2{). Future extensions of the

site-to-site fluctuations of the spin Hamiltonian parametec®de are in progress and will concern nonlinear inversiol
appears to be useful for better understanding EPR linmethods for analyzing site distributions in poorly orderec
shapes, in relation to structural disorder and structural nevaterials. The source code of the program is availabl
laxation phenomena. However, this approach may fail whevithout charge to academic users from request to the al
dealing with S> } centers in poorly ordered minerals andhors, or at the following URL: http://www.Imcp.jussieu.fr/

noncrystalline solids. In those cases, distributions of ZFSmorin/zfsfit.html.
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APPENDIX 1
03= 2 [(7S2— S¥ S+ 1)2—5)(S?2 + S?)
Stevens’ operatoi®“ correspond to linear combinations of

tensor operators and can be written as follo@&):( + (8% + 82)(7SZ - S(S+ 1)* - 5)]
1
09=0? 0f=,[S(si+8%) +(Si +8%)s]
04 = E 0OY+ O 1
k_2( k k) OQZE(S‘}_‘FS{)
1 . .
0= 2 (O — 0,9 Algebraic forms of theO,“ are obtained from the above

formulas by substituting-i (S} — S") for (S} + S"). Matrix
elements o002, 0%, 03, O3, OF, andOy; are tabulated in4).
'fhe matrix elements ad; andO; are easily obtained from the
matrix elements 0D3, O, andO;, O,*, respectively, tabu-
lated in 3). The matrix elements of th®, ¢ are thoroughly
obtained from those of th®,' as follows B1):

where theO, “ are the nonnormalized tensor operators given
(63). Algebraic forms of theD| are written as follows33):

03=13S2—S(S+ 1)

1
0= [S(S, +S) + (S, + 53] (MO |mg) = +i(myOglmg  if m5< mg

(MO, Img) = —i{mgOImg) if ms> ms.

1
O3=(S% +8?%) : .
2 According to these definitions, the ZFS term forsS3 is

09 = 355! — (30S(S+ 1) — 25)S? written as
k
_ 2. 2 4
6SA(S+ 1)?+ 3S%S+ 1) Hys= > S BIOY
1 k=2,4 q=—k
0;= 1 [(7S; — (3S(S+ 1)*+ 1)S)(S. + S.) where the so-called Stevens constant, or ZFS param@&grs,

are real. For instance, the matrix expressiomgfs for S = 3
+ (S, +S)(7S! - (3S(S+ 1)? + 1)S))] is written as

L e )
"2 "2 "2 2 "2 "2
5
<+§ 10C3+ CY
g —\B5Ci
<+§ 1 o —2c8-3cy
2\/@ 4
+2 —8CJ+ 2C
2 > 10CF 55 Ci 2 4
v \
< 1 1 3\,5105
el B c3 0 —8CJ+ 2C}%
2 2\/@ 4 _Zl/iclzl 2 4
V
3 1 3,2 C3 \2C3
4 1 1 0 0
_E _7/gc:4 0 . C2 _ 1 _2C2_3C4
v 22 ¢ 227
<5 1, 1 \'@53 v@f% o
- 0 -—=cC C 10CY+C
2 V@ 4 2\//% 4 +mC‘2‘ +ﬁC}1 2 4
N N
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where the upper triangular matrix is obtained(bys|H z- ms)

= (mgHms)* and where theC; coefficients are related to

the Bi® ZFS parameters as follows:

cg=BY

Ci=BY+iB,%q=1,2

C9 = 60BY
Cy=60(BI+iB,;%,q=1, 2, 3, 4.
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